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ABSTRACT

Gastric cancer remains a significant global health concern, coercing the need for 
advancements in imaging techniques for ensuring accurate diagnosis and effective treatment 
planning. Artificial intelligence (AI) has emerged as a potent tool for gastric-cancer imaging, 
particularly for diagnostic imaging and body morphometry. This review article offers a 
comprehensive overview of the recent developments and applications of AI in gastric cancer 
imaging. We investigated the role of AI imaging in gastric cancer diagnosis and staging, 
showcasing its potential to enhance the accuracy and efficiency of these crucial aspects of 
patient management. Additionally, we explored the application of AI body morphometry 
specifically for assessing the clinical impact of gastrectomy. This aspect of AI utilization 
holds significant promise for understanding postoperative changes and optimizing patient 
outcomes. Furthermore, we examine the current state of AI techniques for the prognosis 
of patients with gastric cancer. These prognostic models leverage AI algorithms to predict 
long-term survival outcomes and assist clinicians in making informed treatment decisions. 
However, the implementation of AI techniques for gastric cancer imaging has several 
limitations. As AI continues to evolve, we hope to witness the translation of cutting-edge 
technologies into routine clinical practice, ultimately improving patient care and outcomes in 
the fight against gastric cancer.

Keywords: Artificial intelligence; Deep learning; Gastric cancer; Diagnostic imaging; 
Sarcopenia

INTRODUCTION

Gastric cancer is a life-threatening malignancy that is prevalent worldwide. Gastrectomy 
is an essential treatment for patients with gastric cancer [1]. Early diagnosis, appropriate 
surgical planning, and tailored patient management based on the prognostic factors are key 
to achieving better patient survival. Diagnostic imaging, particularly computed tomography 

Received: Jul 20, 2023
Revised: Jul 28, 2023
Accepted: Jul 28, 2023
Published online: Jul 31, 2023

Correspondence to
Yousun Ko
Department of Radiology and Research 
Institute of Radiology, Asan Medical Center, 
University of Ulsan College of Medicine, 88 
Olympic-ro 43-gil, Songpa-gu, Seoul 05505, 
Korea.
Email: ko.yousun82@gmail.com

*These authors equally contributed to this 
work as co-first authors.

Copyright © 2023. Korean Gastric Cancer 
Association
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0) 
which permits unrestricted noncommercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Kyung Won Kim 
https://orcid.org/0000-0002-1532-5970
Jimi Huh 
https://orcid.org/0000-0002-8832-6165
Bushra Urooj 
https://orcid.org/0009-0008-5660-167X
Jeongjin Lee 
https://orcid.org/0000-0002-4151-6922

Review Article

Kyung Won Kim  1,*, Jimi Huh  2,*, Bushra Urooj  3, Jeongjin Lee  4,  
Jinseok Lee  5, In-Seob Lee  6, Hyesun Park  7, Seongwon Na  3, Yousun Ko  1,3

1 Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan 
College of Medicine, Seoul, Korea

2Department of Radiology, Ajou University School of Medicine, Suwon, Korea
3Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea
4School of Computer Science and Engineering, Soongsil University, Seoul, Korea
5 Department of Biomedical Engineering, College of Electronics and Information, Kyung Hee University, 
Yongin, Korea

6Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
7Body Imaging Department of Radiology, Lahey Hospital and Medical Center, Burlington, MA, USA

Artificial Intelligence in Gastric Cancer 
Imaging With Emphasis on Diagnostic 
Imaging and Body Morphometry

J Gastric Cancer. 2023 Jul;23(3):388-399
https://doi.org/10.5230/jgc.2023.23.e30
pISSN 2093-582X·eISSN 2093-5641

https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://orcid.org/0000-0002-1532-5970
https://orcid.org/0000-0002-1532-5970
https://orcid.org/0000-0002-8832-6165
https://orcid.org/0000-0002-8832-6165
https://orcid.org/0009-0008-5660-167X
https://orcid.org/0009-0008-5660-167X
https://orcid.org/0000-0002-4151-6922
https://orcid.org/0000-0002-4151-6922
http://crossmark.crossref.org/dialog/?doi=10.5230/jgc.2023.23.e30&domain=pdf&date_stamp=2023-07-31
https://orcid.org/0000-0002-1532-5970
https://orcid.org/0000-0002-8832-6165
https://orcid.org/0009-0008-5660-167X
https://orcid.org/0000-0002-4151-6922
https://orcid.org/0000-0002-8580-490X
https://orcid.org/0000-0003-3099-0140
https://orcid.org/0000-0003-0707-1875
https://orcid.org/0009-0004-9742-5351
https://orcid.org/0000-0002-2181-9555


Jinseok Lee 
https://orcid.org/0000-0002-8580-490X
In-Seob Lee 
https://orcid.org/0000-0003-3099-0140
Hyesun Park 
https://orcid.org/0000-0003-0707-1875
Seongwon Na 
https://orcid.org/0009-0004-9742-5351
Yousun Ko 
https://orcid.org/0000-0002-2181-9555

Funding
This study was supported by a grant of the 
Korea Health Technology R&D Project through 
the Korea Health Industry Development 
Institute (KHIDI), funded by the Ministry 
of Health & Welfare, Republic of Korea 
(HI18C1216).

Conflict of Interest
No potential conflict of interest relevant to this 
article was reported.

Author Contributions
Conceptualization: Kim KW, Jimi Huh, Ko 
Y; Data curation: Kim KW, Lee IS, Park H, 
Lee J, Lee J; Funding acquisition: Kim KW; 
Supervision: Ko Y; Visualization: Kim KW, Ko 
Y; Writing – original draft: Kim KW, Jimi Huh, 
Urooj B; Writing – review & editing: Kim KW, 
Jimi Huh, Urooj B, Lee J, Lee J, Lee IS, Park H, 
Na S, Ko Y.

(CT), is the primary modality used for the diagnosis, staging, treatment planning, and 
prognostication [2]. The rapid advancement of artificial intelligence (AI) techniques has 
spurred numerous research endeavors aimed at utilizing AI and radiomics models to 
enhance the diagnosis, staging, and prognosis of patients with gastric cancer undergoing 
gastrectomy. However, despite these promising research-level models, they have not yet 
been implemented in routine clinical practice. To achieve widespread adoption, complete 
automation, standardization, and rigorous validation are essential requirements that need to 
be addressed.

In addition, AI techniques have been developed for body morphometry, which can segment 
and measure body muscles and fat [3]. Sarcopenia, a condition characterized by the loss of 
muscle mass and function, is highly prevalent in surgical patients of gastric cancer [4]. Most 
patients experience worsened nutritional status, weight loss, and muscle mass decline after 
gastrectomy [5,6]. These postgastrectomy changes are important prognostic factors that 
should be managed through personalized care to improve the overall survival [7]. Currently, 
multimodal AI models that use both CT imaging and electronic health records (EHRs) have 
gained emphasis for enhancing the accuracy of AI prognostic models [8].

This review provides an overview of the recent advancements and applications of AI in 
CT imaging for gastric cancer diagnosis, treatment planning, sarcopenia evaluation, 
and prognostication (Table 1). Additionally, we explored the limitations, potential future 
directions, and clinical impact of AI on CT imaging for gastric cancer.

AI FOR DIAGNOSIS

Endoscopy plays a crucial role in detecting gastric cancer and distinguishing between early 
gastric cancer (EGC) and advanced gastric cancer (AGC). Thus, AI techniques for endoscopy 
have been developed, focusing on the detection of EGC, differential diagnosis of gastric 
lesions, and optimization of narrow-band imaging endoscopy [27]. In general, CT scans are 
crucial for determining the stage of cancer and devising suitable treatment plans [28]. CT 
often plays a significant role in the differential diagnosis of gastric masses, prompting the 
development of radiomics and AI models in this field.
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Table 1. Summary of the artificial intelligence techniques for CT images utilized for patients with gastric cancer treated with gastrectomy
Purpose Functions References
Diagnosis

Differential diagnosis Differentiating gastric mass among gastric adenocarcinomas, lymphomas, and gastrointestinal stromal tumors [11,12]
Staging

T-staging Staging a gastric cancer including dividing it into subcategories: T1a, T1b, T2, T3, T4a, and T4b [9,10]
N-staging Distinguishing between lymph node positive and lymph node negative status or predicting the number of lymph 

node metastases
[19-22]

M-staging Detecting the peritoneal seeding lesions or occult peritoneal metastasis [23-26]
Body morphometry

Sarcopenia evaluation Automatic selection of the L3 vertebral level and automated segmentation of muscle and fat areas on CT scan [3,13]
Myosteatosis evaluation Web-based toolkit for the automatic analysis of myosteatosis on CT scans [14]
Impact of RSV Evaluating the clinical impacts of RSV on the nutrition, anemia, and sarcopenia [6,15]

Prognostication
Radiomics approach Utilizing the radiomic features to predict the prognosis of patients with gastric cancer [16,17]
Multimodal approach Utilizing large clinical datasets including CT images and electronic health records to enhance the accuracy of 

prognostic models
[8,18]

CT = computed tomography; RSV = remnant stomach volume.
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Ba-Ssalamah et al. [11] used radiomic texture analysis to classify adenocarcinomas, 
lymphomas, and gastrointestinal stromal tumors using contrast-enhanced CT scans. Their 
study reported misclassification rates ranging from 0 to 10% [11]. Recently, Feng et al. [12] 
focused on differentiating Borrmann type IV gastric cancer from primary gastric lymphoma 
using contrast-enhanced CT scans. By combining a deep learning model to segment 
tumor areas and subjective finding model, they found that highly enhanced serosa and 
heterogeneity signature were significant factors for differentiating the 2 diseases [12].

AI FOR STAGING

The TNM classification is an internationally recognized standard staging system for gastric 
cancer. The staging accuracy of CT scans ranges from 67.1% to 89.1% for T staging, and from 
49.3% to 79.5% for N staging [29]. The diagnostic accuracy of CT for detecting peritoneal 
metastases is low, ranging from 25.0% to 90.0% (median, 57.6%) [29]. This limited accuracy 
has prompted significant research efforts to develop AI techniques that enhance the TNM 
staging accuracy using CT scans.

T-staging
For T-staging of gastric cancer, radiologists assessed the presence of focal or diffuse wall 
thickening or mass-like lesions with densities different from those of the normal stomach 
wall on contrast-enhanced CT images. The detailed criteria for CT staging of the T stage 
are summarized in Fig. 1 [30]. Even experienced radiologists often encounter challenges 
in accurately distinguishing between EGC (T1 cancer) and T2 stage gastric cancer on CT 
scans. The accuracy for this differentiation ranges from 51.6% to 91.5%. Furthermore, 
discriminating between T1a and T1b stage cancers is more challenging, with accuracies 
ranging from 62.5% to 69.2% [31]. Zeng et al. [9] reported that AI classifier models based 
on ResNet101 demonstrated high accuracy in distinguishing between EGC (T1 cancer) 
and T2 cancer, with accuracies ranging from 91.4% to 94.6%. Furthermore, their model 
demonstrated the ability to discriminate between T1a and T1b cancers with accuracies 
ranging from 62.3% to 88.6% [9]. Despite these promising results, these AI models 
have not yet been implemented in clinical practice owing to their insufficient diagnostic 
accuracy compared to endoscopic ultrasonography, which remains the preferred method for 
evaluating the depth of invasion.

Another challenge in T-staging using CT is the evaluation of serosal invasion in gastric 
cancer. The accuracy of CT in identifying serosal invasion has been reported to be 76.6% 
(sensitivity,96%; specificity,72.4%) [10]. As T4a stage cancer with serosal invasion is considered 
to increase the risk of peritoneal metastases, identifying serosal invasion is important for 
treatment planning. Recently, Sun et al. [10] reported that a CT-based deep learning radiomics 
model could accurately evaluate serosal invasion in AGC, with area under curves (AUCs) 
ranging from 0.76 0.90. However, these AI radiomics models require the manual segmentation 
of tumors, which is time-consuming. In addition, these models have not been validated in 
many external validation cohorts; thus, they have not yet been clinically applied.

N-staging
Lymph node (LN) metastasis is a significant prognostic factor for gastric cancer. The accurate 
assessment of LN metastasis before surgery is crucial for making treatment decisions, such 
as determining the suitability of endoscopic mucosal resection, neoadjuvant chemotherapy, 
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or gastrectomy with or without lymphadenectomy. Currently, the commonly used criteria 
for N-staging on contrast-enhanced CT are as follows: 1) LNs with a short-axis diameter 
≥8 mm; 2) a cluster of 3 or more peritumoral LNs regardless of size; 3) LNs showing strong 
enhancement >100 HU; or 4) LNs with central necrosis and perinodal infiltration regardless 
of size [32]. However, N-staging on contrast-enhanced CT scans is unsatisfactory owing to its 
low diagnostic accuracy, leading to the development of several AI techniques with or without 
radiomics for evaluating LN metastasis [19-22]. These studies have utilized both radiomics 
analysis of handcrafted primary gastric cancer lesions or metastatic LNs as well as deep 
learning models.
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Stage

T1a

T1b

T2

T3

T4a

T4b

N

M

Lesion
definition

Lamina
propria or
muscularis
mucosae

Tumors with enhancement and/or
thickening of the abnormal mucosa,
compared to the adjacent normal mucosa,
with an intact low-density stripe

Tumors with disruption of the low-density
stripe (<50% of the thickness)

Tumors with disruption of the low-density
stripe (>50% of the thickness) without
abutting the outer high-attenuating layer

Tumors that discrimination between the
enhancing gastric lesion and the outer
layer is indiscernible. A smooth outer
margin with perigastric fat plane is visible.

Tumors with an irregular or nodular outer
margin of the outer layer and/or a dense
bandlike perigastric fat infiltration.

Tumors with obliteration of the fat plane
between the gastric lesion and the
adjacent organs or direct invasion of the
adjacent organs

LNs with a short-axis diameter ≥8 mm, a
cluster of three or more peritumoral LNs,
showing strong enhancement >100 HU, or
central necrosis and perinodal infiltration

Peritoneal fat stranding, omentum cakes,
ascites, parietal peritoneal thickening, and
nodules/masses

Submucosa

Muscularis
propria

Subserosal
connective
tissue

Serosa
(visceral
peritoneum)

Adjacent
structures

LN
metastasis

Peritoneal
seeding

CT staging criteria Sample images

Fig. 1. Criteria for computed tomography staging of gastric cancer with sample cases. 
LN = lymph node.



Most studies have focused on distinguishing between the N+ (LN-positive) and N- (LN-negative) 
statuses [19,21,22]. However, Dong et al. [20] aimed to develop a deep learning radiomic 
nomogram to predict the number of LN metastases. The model in the study by Dong et al. 
[20] was a well-validated international multicenter collaboration, which was tested in three 
external validation cohorts and one international validation cohort, ensuring the reliability 
and reproducibility of their results across different centers. They demonstrated that the deep 
learning radiomic nomogram achieved good discrimination in predicting the number of 
metastatic LNs across all cohorts, with C-indices ranging from 0.797 to 0.821 [20]. However, 
these advanced models require manual tumor region segmentation by an experienced 
radiologist, which limits their practical utility in daily clinical practice.

M-staging
The evaluation of peritoneal metastasis is the most crucial aspect of M staging in gastric 
cancer. Typically, CT images show specific characteristics associated with peritoneal 
metastasis, including peritoneal fat stranding, omental cakes, ascites, parietal peritoneal 
thickening, and nodules/masses. However, when these features are subtle, radiologists 
may overlook them, leading to reduced sensitivity and diagnostic accuracy of peritoneal 
metastases. In addition, occult peritoneal metastasis (OPM) refers to lesions in which the 
initial CT scan indicates negative peritoneal metastasis but subsequent laparoscopy or 
surgery reveals its presence. Owing to the inherent nature of OPM, CT scans have limited 
sensitivity and diagnostic accuracy in patients with OPM [23]. Consequently, extensive 
research efforts have focused on developing radiomics or AI models to enhance the detection 
rates of peritoneal metastasis and OPM on CT scans [23-26].

Previous studies have predominantly employed radiomics analysis based on manually 
crafted features from primary gastric cancer or potential peritoneal lesions, yielding AUC 
values ranging from 0.724 to 0.836 [24-26]. However, one study utilized a deep learning 
model that exhibited improved diagnostic accuracy with an AUC of 0.900, surpassing that 
of the conventional clinical model (AUC of 0.670) [23]. Nevertheless, a common challenge 
shared by all M-staging studies, as well as T-staging and N-staging, is the need for manual 
segmentation of tumors, which significantly hampers their practical application in routine 
clinical practice.

AI FOR BODY MORPHOMETRY

Body morphometry refers to the quantification of body fat and muscle mass, which are 
commonly assessed using cross-sectional imaging, such as abdominal CT or magnetic 
resonance imaging (MRI). Body morphometry is based on imaging segmentation techniques. 
Traditionally, manual or semiautomated segmentation methods involving labor-intensive 
processes have been employed to measure the muscle and fat areas in cross-sectional images. 
However, these approaches are not feasible for large datasets owing to the substantial time 
and human resources needed. To overcome these limitations, fully automated segmentation 
methods utilizing deep learning techniques have been developed. [4].

Gastrectomy greatly influences the physiological and nutritional changes in patients treated 
with gastrectomy. These postgastrectomy changes can be critical determinants of the long-
term survival of patients [7]. Body morphometric changes, such as sarcopenia, myosteatosis, 
and osteoporosis, have gained attention as important adverse events following gastrectomy 
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that can influence prognosis. These body morphometric changes can be evaluated through 
abdominal CT imaging, which is routinely performed to evaluate the primary disease 
[4]. When these routine CT scans are evaluated for body morphometric changes other 
than primary disease, they are referred to as opportunistic CT scans. Recently, several AI 
techniques have been developed for body morphometric analysis of opportunistic CT scans.

Algorithms for sarcopenia evaluation
According to the revised European Working Group on Sarcopenia in Older People 
(EWGSOP2), the muscle area measured at the third lumbar vertebral level on CT was used 
as a representative value because it reflects overall body muscle mass [33]. Deep learning 
techniques enable automatic segmentation of the muscle and fat areas. The authors 
developed a fully automated AI technique for body morphometry, consisting of 2 AI 
algorithms: 1) automatic selection of the L3 vertebral level and 2) automated segmentation 
of the muscle and fat areas [3,13]. The overall framework of the fully automated body 
morphometry is illustrated in Fig. 2. This deep learning model offers a fully automated 
selection of the axial CT slice at the L3 vertebral level and accurate segmentation of the 
abdominal muscle area, irrespective of the anatomical variations. The average cross-sectional 
area errors of the deep learning model were 2.22% in the normal anatomy group and 2.37%–
4.06% in the anatomic variation group [13]. Recently, this AI body mophometry solution 
(AID-U™; iIAD Inc., Seoul, Korea) obtained regulatory approval, enabling its utilization in 
clinical practice.

Algorithms for myosteatosis evaluation
Recently, there has been a growing interest in evaluating myosteatosis, which refers to 
excessive fat infiltration within skeletal muscles, as part of the body morphometry analysis 
[34]. With advancements in deep learning and imaging post-processing techniques, it is now 
possible to assess both the muscle area and myosteatosis. A web-based toolkit was developed 
for the automatic analysis of myosteatosis on abdominal CT scans, as depicted in Fig. 3 [14]. 
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Enhanced CT as input data Maximum intensity projection image
for L3 level selection

CT slice number of L3: 37

Subcutaneous fat area
62.7 cm2

Skeletal muscle area
141.5 cm2

Viceral fat area
36.5 cm2

Body morphometry analysis

Fig. 2. Framework of the artificial intelligence techniques for fully automated body morphometry. 
CT = computed tomography; L3 = the third lumbar spine vertebra.



Additionally, this toolkit enables the evaluation of visceral and subcutaneous fat areas. This 
toolkit utilizes deep-learning algorithms to accurately quantify and evaluate the degree of 
myosteatosis, thereby providing a valuable tool for comprehensive body morphometry analysis.

Evaluation of the clinical impact following gastrectomy
Gastrectomy influences one of the most crucial human functions, eating, owing to early 
satiety, loss of appetite, dumping syndrome, reflux gastritis/esophagitis, and a variety of 
other adverse events [7]. Consequently, poor eating habits can cause considerable weight 
loss, nutritional deficiencies, and decreased physical activity. These changes can lead to 
sarcopenia, frailty, and mortality [6]. Furthermore, individuals undergoing subtotal and 
total gastrectomies exhibit substantial variations in weight change and body morphometric 
alterations, with remnant stomach volume (RSV) being a key contributing factor [35]. We 
used AI body morphometry techniques to evaluate the clinical impact of gastrectomies.

First, a volumetric measurement method for RSV was developed using postgastrectomy 
CT gastrography [35]. In patients who have undergone gastrectomy, CT gastrography with 
the oral administration of effervescent granules is performed to adequately distend the 
remnant stomach for volume measurements. At our institution, a three-dimensional (3D) 
volumetry technique has been established that generates volume-rendering images using 
semiautomatic segmentation software that distinguishes the luminal space of the remnant 
stomach containing air (Fig. 4).

By employing AI-based body morphometry techniques to measure the muscle mass and 
utilizing 3D volumetry for RSV, Lee et al. [6] investigated the impact of RSV on nutrition, 
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Web-based toolkit Patients with normal muscle

Patients with myosteatosis

Fig. 3. Web-based toolkit for myosteatosis evaluation. 
Sfat = subcutaneous fat area; Vfat = visceral fat area; IMA = intermuscular adipose tissue content; LAMA = low-attenuation muscle area; NAMA = normal-
attenuation muscle area.



anemia, and sarcopenia. During the first year after gastrectomy, all the patients experienced 
a decrease in the visceral fat area on CT, leading to significant weight loss. The extent of this 
decrease was influenced by the RSV, which was the highest in the total gastrectomy group 
without RSV and lowest in the large RSV group [6]. Kim et al. [15] reported that a larger 
RSV was associated with better preservation of muscle and fat after distal gastrectomy, as 
illustrated in Fig. 4.

These findings suggest the potential for a paradigm shift in the guidelines for gastrectomy 
with regard to preserving the RSV [6,15]. Currently, gastrectomy for gastric cancer involves 
the removal of at least two-thirds of the stomach to minimize the risk of tumor recurrence 
[29]. However, based on the results of these studies, modifications to the guidelines could be 
considered to prioritize the preservation of the RSV and optimize postoperative outcomes, 
nutritional status, and body composition. Further research and clinical trials are warranted to 
validate these findings and support potential guideline changes for gastrectomy procedures.

AI FOR PROGNOSTICATION

Accurate prognostic prediction of gastric cancer is of significant importance to all clinicians 
and patients. This information can aid clinicians in making informed decisions and 
improving patient management strategies [7]. Following curative-intent gastrectomy, two 
primary prognostic outcomes were assessed: overall survival and disease-free survival, also 
known as recurrence-free survival. These outcomes provide critical information regarding 
long-term prognosis and recurrence risk in patients who have undergone gastrectomy 
for gastric cancer [1]. In recent years, a surge in research focused on the development of 
prognostic models using AI and radiomics techniques has been observed [36].
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Fig. 4. Combined use of three-dimensional volumetry of RSV and artificial intelligence body morphometry. 
RSV = remnant stomach volume.



Radiomics-based approaches
Radiomics approaches primarily utilize radiomic features extracted from medical images, 
such as CT or MRI, to predict the prognosis of patients with gastric cancer. These approaches 
often focus on disease-free survival with the aim of evaluating the likelihood of recurrence 
following gastrectomy. By analyzing and quantifying a wide range of radiomic features, 
radiomic models offer the potential to enhance prognostic assessments, enabling clinicians 
to identify patients at higher risk of recurrence and tailor treatment strategies accordingly 
[16,17]. However, a notable challenge with these radiomics approaches is the need for 
manual segmentation of tumors, which poses a significant hurdle to their integration into 
routine clinical practice.

Multi-modal approach
Overall survival after gastrectomy is influenced by a multitude of factors: 1) tumor factors, 
including TNM staging or histology; 2) demographic factors, such as age, sex, performance 
status, and socioeconomic status; 3) pathophysiological factors, such as neutrophil/
lymphocyte ratio, nutritional status, and body morphometric changes after gastrectomy; 
and 4) treatment factors, such as adjuvant chemotherapy and surgical procedures [5]. 
Considering the multifactorial nature of overall survival, it is essential to comprehensively 
assess these factors when determining the prognostic outcomes and developing personalized 
treatment strategies for patients who have undergone gastrectomy for gastric cancer [8].

Traditionally, statistical prognostic models, such as the Cox proportional hazards regression 
models or nomogram models, have been employed to predict the overall survival. However, 
these models were limited by the number of variables included in the model. Consequently, 
AI-based prediction models have garnered increasing attention, particularly owing to the 
advantages of deep learning in handling large clinical datasets with nonlinear effects and 
interactions between variables. Consequently, growing emphasis exists on multimodal AI 
models that integrate both CT imaging and EHRs to enhance the accuracy of prognostic 
models [18].

Recently, Chung et al. [8] developed an AI prognostic model for predicting 5-year 
survival using a substantial dataset of over 4,000 cases with 63 variables. These variables 
include nutrition, skeletal muscle mass, visceral/subcutaneous fat, sarcopenia, obesity, 
comorbidities, interval changes before and after surgery, and cancer-related variables [8]. In 
the external validation, they achieved promising results, with an AUC of 0.8903, sensitivity of 
86.96%, and specificity of 74.60% for predicting 5-year survival. Despite these encouraging 
findings, the authors emphasize the need for further validation in larger populations to 
confirm the robustness and generalizability of the model.

CHALLENGES AND FUTURE DIRECTION

Although AI and radiomics have shown promising results in the diagnosis, staging, body 
morphometry, and prognosis prediction, several barriers should be addressed before their 
widespread adoption in clinical practice [36]. First, although AI algorithms may perform 
well in research settings, their effectiveness and safety should be rigorously validated in 
real-world clinical scenarios. Robust clinical trials and validation studies are essential for 
demonstrating the utility and impact of AI in improving patient outcomes. Second, seamless 
integration of AI and radiomics solutions into existing clinical workflows and healthcare 
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systems is essential. Thus, AI or radiomics techniques that require manual or semiautomatic 
segmentation of tumors should evolve into fully automatic seamless solutions [27]. 
Moreover, several issues, including source data quality, privacy concerns, interpretability, and 
explainability should be overcome.

CONCLUSIONS

In this review, we discuss the current status of AI imaging research in patients with gastric 
cancer treated with gastrectomy. Although several useful results have been reported, there is 
still room for further development. Solutions for diagnosis, staging, and prognostication are 
still in the research phase, and AI body morphometry has been commercialized and used in 
clinical settings. By evolving AI and radiomics techniques towards fully automatic solutions, 
we can enhance their clinical utility, reduce potential human errors, and promote their wider 
adoption in routine clinical practice. This evolution would accelerate the integration of these 
powerful technologies into the healthcare system, ultimately benefiting patients by enabling 
more accurate and efficient diagnosis, staging, and prognostication of various diseases, 
including gastric cancer.
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