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Abstract: The concept of the quick sequential organ failure assessment (qSOFA) simplifies sepsis
detection, and the next SOFA should be analyzed subsequently to diagnose sepsis. However, it
does not include the concept of suspected infection. Thus, we simply developed a biomarker-based
assessment model for detecting sepsis (BADS). We retrospectively reviewed the electronic health
records of patients admitted to the intensive care unit (ICU) of a 2000-bed university tertiary referral
hospital in South Korea. A total of 989 patients were enrolled, with 77.4% (n = 765) of them having
sepsis. The patients were divided into a ratio of 8:2 and assigned to a training and a validation
set. We used logistic regression analysis and the Hosmer–Lemeshow test to derive the BADS and
assess the model. BADS was developed by analyzing the variables and then assigning weights to the
selected variables: mean arterial pressure, shock index, lactate, and procalcitonin. The area under the
curve was 0.754, 0.615, 0.763, and 0.668 for BADS, qSOFA, SOFA, and acute physiology and chronic
health evaluation (APACHE) II, respectively, showing that BADS is not inferior in sepsis prediction
compared with SOFA. BADS could be a simple scoring method to detect sepsis in critically ill patients
quickly at the bedside.

Keywords: septic shock; mortality; intensive care unit; quick sequential organ failure assessment;
infection

1. Introduction

‘Sepsis’ originated from the Greek word [σηψις], meaning ‘decomposition of animal
or vegetable organic matter in the presence of bacteria’ more than 2700 years ago [1].
The current concept of sepsis was first introduced at the 1991 American College of Chest
Physicians (ACCP)/Society of Critical Care Medicine (SCCM) Consensus Conference; it
was recently redefined in the Third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis-3) as ‘life-threatening organ dysfunction caused by a dysregulated
host response to infection’ [2,3]. Although sepsis is a significant cause of death in critically
ill patients, because of this conceptual ambiguity, providing clinically apparent diagnostic
criteria and early detection is difficult.

Since the 1980s, several mortality prediction scoring systems have been proposed for
intensive care unit (ICU) patients; however, these are not suitable for sepsis diagnosis [4–7].
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The sequential organ failure assessment (SOFA) was introduced by the European Society
of Intensive Care Medicine (ESICM) in 1994 to assess the severity of organ dysfunction in
critically ill patients. Given that multi-organ dysfunction (MOD) has been identified as a
major cause of death in ICU patients, SOFA has been used for a long time as a predictor
of mortality [5]. However, the causes of MOD are diverse, and a high SOFA score does
not always mean severe sepsis. Moreover, because of the need for laboratory findings and
physical examinations, SOFA could not be easily and quickly applied in sepsis patients,
where rapid diagnosis is essential. To overcome these shortcomings, Sepsis-3 introduced a
new concept of quick SOFA (qSOFA) as a simple bedside score, which can be easily applied
compared to the SOFA score [3].

It is indisputably accepted that qSOFA can detect sepsis using only vital signs and
mental states. However, despite that, qSOFA was developed for sepsis detection, while
SOFA was developed for the prediction of MOD and mortality; the variables are still not
pathognomonic in sepsis, and they could be affected by causes other than sepsis. Moreover,
in the emergency department, where early detection of sepsis is also essential, there are
some discussions about whether qSOFA alone can predict sepsis and mortality [8–10].
qSOFA and SOFA do not contain the concept of suspected infection, which is still ambiguous
in sepsis diagnosis. Therefore, physicians should work particularly hard to find suspected
infections in patients with higher qSOFA or SOFA scores. Unfortunately, the calculation of
sequential SOFA is complicated and takes time, which makes it less feasible to be performed
directly at the patient’s bedside.

The generalization of electronic medical records (EMR) and advancements in artificial
intelligence (AI) have facilitated the investigation of sepsis diagnosis through machine
learning [11,12]. A recent study attempts to diagnose sepsis using unstructured clinical data,
such as clinical text and images, along with vital signs and laboratory data [13]. However,
there are still many hurdles on the path of sepsis diagnosis through AI technologies being
universally used worldwide in the medical field. In particular, it cannot be used in countries
or medical institutions where electronic medical record systems are poorly established.
Rather, the medical field needs a tool, which can intuitively identify patients with sepsis at
the bedside.

Focusing on these points, we aimed to introduce our newly developed simple biomarker-
based assessment model for detecting sepsis (BADS). We took into consideration the follow-
ing aspects: (1) the model should include the variables for infections, and subsequent steps
should not be required; (2) the model can be applied simply in ICU patients; and (3) the
model can help predict multi-organ failure or mortality similarly to other methods.

2. Materials and Methods
2.1. Study Design and Patient Population

This study was a single-center retrospective cohort study, and the study protocol was
approved by the institutional review board (IRB) of the Severance Hospital (IRB number:
4-2017-0654) and performed following the Helsinki Declaration. Individual patient data
were stored as an encrypted file, and only authorized investigators were able to access
personal medical records to protect the privacy of patients. The IRB committee approved
the waiver of informed consent because the study was retrospective in design, and the
personal information of patients enrolled in this study was removed from all sections of
the manuscript by the HIPAA privacy rule.

We analyzed a total of 989 patients aged >18 years who were admitted to the medical
ICU at the Yonsei University Severance Hospital from March 2015 to September 2017.
Patients who were re-admitted during the period were the only ones excluded. Patients
were divided into a ratio of 8:2 by random sampling, and they were allocated to a train-
ing and a validation set. A new diagnosis model was developed using the ‘training
set’, and the diagnostic performance of the model was evaluated in the validation set
(Supplementary Figure S1).
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2.2. Variables and Definitions

Two intensivists retrospectively categorized ICU patients into sepsis and non-sepsis us-
ing information from the hospital records, including patients’ history, clinical presentation,
microbiological results, and discharge administrative claim codes (international statistical
classification of disease and related health problems—10 codes for sepsis (A02.1, A20.7,
A22.7, A24.1, A26.7, A32.7, A39.2, A39.3, A39.4, A40.x, A41.x, A42.7, B00.7, B37.7, O85,
P36.x), severe sepsis (R65.1), septic shock (R57.2)). According to the Sepsis-3 diagnostic
criteria, sepsis was diagnosed when a patient with a suspected or confirmed infection had
an acute change of 2 or more points in the SOFA score. This change was directly associated
with the infection, leading to a diagnosis of sepsis. However, if there was no suspected
infection related to sepsis in the judgment of the critical care specialists who reviewed the
data retrospectively, the case was deemed not to be sepsis, even if the SOFA score had
changed by 2 points or more.

The prediction power of the new model was compared to that of the SOFA, qSOFA,
and acute physiology and chronic health evaluation II (APACHE II) [4,5]. In the Sepsis-3
definition, sepsis is suspected when the patient has a suspected infection, and the qSOFA
score is accompanied by two or more of the following conditions: incorporating altered
mentation, systolic blood pressure ≤100 mm Hg, and respiratory rate ≥22 breaths/min [3].

2.3. Data Collection and Clinical Outcomes

We collected the data regarding the baseline demographics, pre-existing comorbidities,
and other laboratory findings obtained within 24 h of ICU admission. At the same time,
the patients were assessed for whether they had non-sepsis or sepsis at the time of ICU
admission by reviewing the discharge administrative claim codes.

The goal of the new scoring system was to predict sepsis probability. As the pri-
mary outcome, sepsis probability was calculated according to the total score. After de-
termining the cut-off level of the new model, we divided patients into the low- and high-
score groups and compared the 28-day overall mortality between the two groups as the
secondary outcome.

2.4. Statistical Analysis

The clinical parameters were analyzed using Student’s t-test or the Mann–Whitney
U-test for continuous variables and the chi-squared test or Fisher’s exact test for categor-
ical variables. Categorical variables were expressed as numbers with percentages and
continuous variables as medians with interquartile ranges.

In the training set, multivariable logistic regression was used to compare the con-
tribution of variables. Variables identified as highly correlated with sepsis diagnosis,
which could be verified from the patient’s bedside, were selected. These items assigned
weighted proportional points based on their β-coefficients to develop the new prediction
model (called the ‘biomarker-based assessment model for detecting sepsis’ (BADS)). The
suitability of the model was confirmed through the Hosmer–Lemeshow test.

The total BADS score as sepsis probability was calculated for each patient, and the
discrimination for sepsis was evaluated using the area under the receiver operating charac-
teristic (AUROC) curve. According to the cut-off score determined by the ROC curve, the
patients were divided into low- and high-score groups, and the mortality of both groups
was compared by using the Kaplan–Meier curve.

In the training set, we displayed a calibration plot using the bootstrap method and
examined the model’s suitability using the Hosmer–Lemeshow test. ROC comparison
analysis was used to compare the prediction power of BADS with that of the SOFA,
APACHE II, and qSOFA scores. Cross-validation was performed, and the integrated results
were calculated to generalize the results. A two-sided p value < 0.05 was considered
statistically significant. Statistical analyses were performed using R statistical software,
version 3.4.1 (The R Foundation for Statistical Computing, Vienna, Austria).
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3. Results
3.1. Baseline Characteristics of the Study Population

A total of 989 patients were enrolled in this study, with sepsis incidence among 77.4%
(n = 765). Patient baseline demographics are described in Table 1. Compared to the non-
sepsis group, there were more older patients in the sepsis group (68 vs. 64 years, p = 0.034),
and the severity at the time of admission was higher in this group: SOFA (10 vs. 6, p < 0.001),
qSOFA (2 vs. 1, p < 0.001), and APACHE II (25 vs. 19, p < 0.001). There was no statistically
significant difference in the Charlson comorbidity index (3 vs. 3, p = 0.274). Most of the
patients showing positive results in blood culture were diagnosed as having sepsis, except
for a few cases with non-sepsis, who were finally identified as contamination (35.7% vs.
8.0%, p < 0.001). The sepsis group had worse clinical outcomes, which were as follows:
28-day mortality (34.8% vs. 18.8%, p < 0.001), ICU mortality (32.9% vs. 15.2%, p < 0.001),
and hospital mortality (50.8% vs. 38.4%, p = 0.001).

Table 1. Baseline characteristics of patients admitted to medical ICU.

Non-Sepsis Sepsis
p Value

n = 224 (22.6%) n = 765 (77.4%)

Age (year) 64 (56, 75) 68 (57, 77) 0.034
Sex (male), n (%) 132 (58.9) 487 (63.7) 0.198
BMI (kg/m2) 22.2 (19.4, 24.3) 22.0 (19.5, 24.8) 0.905
qSOFA score 1 (1, 2) 2 (1, 2) <0.001

0 points, n (%) 31 (13.8) 60 (7.8)
1 point, n (%) 92 (41.1) 216 (28.2)
2 points, n (%) 75 (33.5) 303 (39.6)
3 points, n (%) 26 (11.6) 186 (24.3)

SOFA score 6 (3, 9) 10 (7, 13) <0.001
APACHE II score 19 (14, 26) 25 (19, 32) <0.001
CCI 3 (2, 5) 3 (1, 4) 0.274
Comorbidity disease, n (%)

Congestive heart failure 39 (17.4) 76 (9.9) 0.002
Coronary arterial disease 28 (12.5) 104 (13.6) 0.672
Chronic pulmonary disease 45 (20.1) 116 (15.2) 0.079
Chronic kidney disease 53 (23.7) 136 (17.8) 0.049
Chronic liver disease 22 (9.8) 79 (10.3) 0.802
Cerebrovascular disease 28 (12.5) 132 (17.3) 0.089
Solid cancer 55 (24.6) 227 (29.7) 0.136
Hematologic malignancy 8 (3.6) 52 (6.8) 0.075

ARDS, n (%) 13 (5.8) 86 (11.2) 0.017
PaO2/FiO2 ratio 232.8 (148.9, 360.1) 190.0 (113.2, 296.4) <0.001
AKI, n (%) 54 (24.1) 254 (33.2) 0.010
Positive blood culture, n (%) 18 (8.0) 273 (35.7) <0.001
28-day mortality, (non-survivors), n (%) 42 (18.8) 266 (34.8) <0.001
ICU mortality, (non-survivors), n (%) 34 (15.2) 252 (32.9) <0.001
Hospital mortality, (non-survivors), n (%) 86 (38.4) 389 (50.8) 0.001

Values are expressed as n (%) or median (interquartile range) unless otherwise indicated. BMI, Body Mass Index;
qSOFA, Quick Sequential Organ Failure Assessment; SOFA, Sequential Organ Failure Assessment; APACHE
II, Acute Physiology and Chronic Health Evaluation Score III; CCI, Charlson Comorbidity Index; ARDS, Acute
Respiratory Distress Syndrome; PaO2/FiO2 ratio, The ratio of partial pressure arterial oxygen and fraction of
inspired oxygen; AKI, Acute Kidney Injury.

Other clinical parameters and findings were also compared, as shown in Table 2. The
following hemodynamic variables were found more unstable in the sepsis group than in
the non-sepsis group: MAP (66 vs. 78 mmHg, p < 0.001), heart rate (106 vs. 95 beats/min,
p < 0.001), and shock index (1.2 vs. 1.0, p < 0.001). The parameters indicating severe
infection were worse in the sepsis group: white blood cell (13.3 × 103/µL vs. 8.5 × 103/µL,
p < 0.001), delta neutrophil index (4.0% vs. 1.5%, p < 0.001), lactate (2.4 vs. 1.3 mmol/L,
p < 0.001), C-reactive protein (102.9 vs. 44.9 mg/L, p < 0.001), and procalcitonin (1.80 vs.
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0.50 ng/mL, p < 0.001); the platelet count (121 × 103/µL vs. 151 × 103/µL, p = 0.001) was
lower in these patients. Each clinical characteristic of the training and validation cohorts is
presented in Supplementary Tables S1 and S2.

Table 2. Clinical parameters of patients at medical ICU admission.

Non-Sepsis Sepsis
p Value

n = 224 (22.6%) n = 765 (77.4%)

Mean arterial pressure (mmHg) 78 (66, 101) 66 (55, 80) <0.001
Heart rate (beats/min) 95 (79, 112) 106 (88, 126) <0.001
Shock index 1.0 (0.7, 1.3) 1.2 (0.9, 1.6) <0.001
WBC (103/µL) 8.5 (5.6, 13.1) 13.3 (7.2, 20.2) <0.001
Hct (%) 28.3 (24.2, 33.0) 28.3 (24.5, 33.2) 0.997
RDW (%) 15.2 (14.0, 16.8) 15.4 (14.1, 17.2) 0.236
Platelet (103/µL) 151 (83, 221) 121 (59, 210) 0.001
DNI (%) 1.5 (0.2, 3.9) 4.0 (1.6, 13.1) <0.001
BUN, (mg/dL) 27.5 (17.2, 54.0) 33.1 (20.3, 50.8) 0.036
Creatinine (mg/dL) 1.0 (0.7, 2.7) 1.4 (0.8, 2.6) 0.046
Albumin (g/dL) 2.7 (2.3, 3.1) 2.5 (2.2, 2.9) <0.001
Total bilirubin (mg/dL) 0.6 (0.4, 1.1) 0.8 (0.5, 1.7) <0.001
Sodium (mmol/L) 137 (134, 141) 138 (134, 142) 0.024
Potassium (mmol/L) 4.2 (3.4, 4.7) 3.9 (3.3, 4.7) 0.147
Lactate, (mmol/L) 1.3 (0.9, 2.2) 2.4 (1.5, 5.0) <0.001
CRP (mg/L) 44.9 (15.8, 108.6) 102.9 (42.3, 181.7) <0.001
Procalcitonin (ng/mL) 0.50 (0.20, 1.80) 1.80 (0.40, 14.05) <0.001

Values are expressed as n (%) or median (interquartile range) unless otherwise indicated. GCS score, Glasgow
Coma Scale score; WBC, White Blood Cell; Hct, Hematocrit; RDW, Red Cell Distribution Width; DNI, Delta
Neutrophil Index; BUN, Blood Urea Nitrogen; CRP, C-Reactive Protein.

3.2. Development of the New Sepsis Prediction Model

The contribution of each variable and the odds ratios of the four selected variables
are described in Table 3. The contributions of the four variables were analyzed by logistic
regression analysis (Supplementary Table S3).

Table 3. Logistic regression analysis of variables for sepsis diagnosis (sepsis vs. non-sepsis).

Univariable Logistic Multivariable Logistic

OR 95% CI p Value OR 95% CI p Value

Mean arterial pressure 0.982 0.977–0.988 <0.001 0.985 0.979–0.992 <0.001
Procalcitonin 1.094 1.054–1.136 <0.001 1.075 1.038–1.114 <0.001
Lactate 1.177 1.101–1.258 <0.001 1.095 1.028–1.166 0.005
Shock index 2.384 1.735–3.274 <0.001 1.526 1.075–2.165 0.018

The effects of the variables on sepsis are described as odds ratio, 95% confidence interval, and p value. OR, Odds
Ratio; CI, Confidence Interval.

The BADS score was developed using the following formula (Figure 1):

1/(1 + exp(−η)), where η = 1.3805 − 0.0147 × MAP + 0.0727 × procalcitonin + 0.0909 × lactate + 0.4223 × shock index

In the training set, the sepsis discrimination power of BADS was analyzed (AUC,
0.766; 95% confidence interval [CI], 0.724–0.809), and the goodness of fit in the logistic
regression model was evaluated (p = 0.752). This result was also statistically significant in
the validation set: sepsis discrimination (AUC, 0.668; 95% CI, 0.598–0.777) and goodness of
fit in the logistic regression model (p = 0.089) (Figure 2).
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Figure 1. Nomogram of BADS score. Four selected variables (mean arterial pressure (MAP), shock
index, lactate, and procalcitonin) and calculated probability of sepsis using a biomarker-based
assessment model for detecting sepsis score (BADS). (a) The points of each variable after assigning the
weight, (b) Probability of sepsis according to total score, (c) Nomogram of the scoring system. BADS,
biomarker-based assessment model for detecting sepsis. ** is the formula for the sepsis predicted
probability used in the nomogram.
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Figure 2. The predictive value and internal validation of sepsis prediction score. ROC curves for
sepsis diagnosis with random prediction line in (a) training and (c) validation cohorts. Model
calibration results for sepsis diagnosis in (b) training and (d) validation cohorts. ROC, receiver
operating characteristic; AUC, area under the curve.

The prediction power of BADS was compared with that of qSOFA, SOFA, and APACHE
II and generalized through cross-validation (Figure 3). The average AUC was 0.754, 0.615,
0.763, and 0.668 for BADS, qSOFA, SOFA, and APACHE II, respectively. The AUC of BADS
was higher than that of qSOFA (AUC difference, 0.139; 95% CI, 0.090–0.188) and APACHE II
(AUC difference, 0.087; 95% CI, 0.034–0.143), and the difference was statistically significant
for qSOFA. Compared with the SOFA, the prediction power of BADS was low but not
statistically significant (AUC difference, −0.009; 95% CI, −0.055–0.035).
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Failure Assessment; SOFA, Sequential Organ Failure Assessment; APACHE II, Acute Physiology and
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3.3. Predictive Performance for Mortality in Sepsis

We set the cut-off score of sepsis diagnosis as 11.4802 (sensitivity, 0.634; specificity,
0.765). Then, the mortality was compared between the low- and high-score groups based
on this cut-off score (Figure 4). As the total points of BADS increased, the 28-day overall
mortality also increased, and this result was statistically significant (hazard ratio, 2.282;
95% CI, 1.744–2.986; log rank p < 0.001) (Figure 4).
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Figure 4. Twenty-eight-day mortality of patients according to high- and low-score group according
to the sepsis diagnostic cut-off score (11.4802). The mortality was significantly increased in the
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4. Discussion

We developed a new scoring system, which can be simply used in ICU patients at the
bedside. Compared with the SOFA score, BADS was not statistically inferior concerning
sepsis discrimination, and a statistically significant increase in mortality was observed in
the high-score group.

According to the discharge data, the incidence and mortality associated with sepsis
are still increasing [14]. In the Sepsis-3 definitions, qSOFA was introduced to help in the
detection of sepsis in patients with suspected infections [3]. However, the variables, such
as tachypnea, hypotension, and unconscious mental state, are not pathognomonic changes,
which are only caused by sepsis, and qSOFA does not include the concept of infection.
Moreover, in the initial approach for patients in the emergency department, qSOFA alone
was reported to be clinically ineffective in predicting sepsis and mortality. Thus, additional
validations of qSOFA are required because it does not replace existing early warning scores,
even in retrospective studies [8–10,15].

It is not easy to identify infections or suspected infections, since the source of infection
and causative organisms are not always obvious, and positive cultures may not reflect
the actual infections. Moreover, the concept of sepsis is ambiguous; thus, it is not easy to
identify one or two diagnostic variables or develop models, which can predict sepsis. In
this study, we finally selected four sepsis-related variables, which could be measured in a
simple way.

The respiratory rate is known to be an early indicator of patient deterioration in
both adults and children, and it is often the activation criterion for the rapid response
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team [16–18]. Blood pressure, pulse rate, temperature, and oxygen saturation are routinely
measured in an automated manner; however, the respiratory rate remains the only parame-
ter, which is measured manually, and there is no precise way to measure the respiratory
rate accurately [19]. In several retrospective studies, the inaccuracy in measuring the respi-
ratory rate was described. The values tend to be clustered at 18 and 20 breaths/minute, as
observers usually multiply the values measured for a shorter period instead of measuring
the respiratory rate for a full minute, even though respiratory rates are not always regular.
Moreover, patients who are aware that the respiratory rate is being measured may affect
the results [20,21]. Thus, further randomized controlled trials or prospective studies for the
accurate measurement of the respiratory rate may be required to increase the reliability.

Conversely, in the Surviving Sepsis Campaign Guidelines, a MAP of more than
65 mmHg is usually recommended as an indicator for adequate fluid resuscitation in
patients with sepsis [22,23]. Mean arterial pressure is often used as an index for maintaining
renal perfusion or adjusting vasopressor capacity [24]. The shock index, defined as the
ratio of heart rate to systolic arterial pressure, is also known to be more useful in assessing
hemodynamic stability than the conventional vital signs in critically ill patients [25–27].
However, the pulse rate can be influenced by vasopressors and other factors, which limits
the accuracy of the shock index. Thus, these two clinical indicators, which can be measured
at the bedside, have different clinical meanings, and we selected the MAP and shock index
as indicators of circulation failure and organ hypoperfusion due to septic shock.

However, clinically, hypoperfusion does not always result in gross changes in blood
pressure or heart rate. Sometimes, the patient is normotensive, but organ perfusion is still
insufficient. MAP and the shock index are more representative of severe sepsis or septic
shock than traditional markers, but they do not reflect occult hypoperfusion. Lactate is
known to be increased as a result of anaerobic glycolysis due to inadequate oxygen delivery
in septic shock [28,29]. Several studies have shown that the lactate level is more sensitive
to tissue hypoxia compared to other parameters, and it is associated with higher mortality
if not normalized by treatment [30–33]. Therefore, lactate was also used in our model to
complement the concealed hypoxic changes through sepsis.

Procalcitonin was first described as a possible biomarker of sepsis in 1993 [34]. Since
then, it is known to increase with the severity of bacterial infection, and unlike C-reactive
protein, it is rarely affected by the glucocorticoid level. Thus, procalcitonin has been
widely used in sepsis diagnosis and antibiotic use guidelines [34–36]. There are many
other biomarkers with higher sensitivity than procalcitonin; however, it takes a relatively
long time to obtain the results of these markers. Procalcitonin, similar to lactate, can be
quickly identified through point-of-care testing (POCT), and recently, the use of handheld
mobile devices has also been introduced [37–39]. On the one hand, using point-of-care
testing equipment in institutions or countries lacking diagnostic capabilities can enable
procalcitonin or lactate measurement, making it more accessible in low- and middle-income
countries. Therefore, procalcitonin and lactate, which can be assessed at the bedside, are
the most appropriate biomarkers for detecting sepsis in cases where rapid diagnosis is a
crucial factor for prognosis.

The strength of BADS is that it is a model developed explicitly for sepsis. Moreover, it
was not inferior in sepsis prediction compared with the SOFA score, and it was as simple
as qSOFA.

However, this study also has several limitations. First, this study was performed
retrospectively in a single center, and thus, the findings presented here require additional
validation in the other forms of ICU and well-organized studies, such as randomized
controlled prospective investigations. Second, although it is theoretically possible, this
score has not been applied to non-ICU patients yet. Finally, the variables we chose for the
model have their limitations. The Surviving Sepsis Campaign Guidelines recommended
a MAP target of 65 mmHg in patients with evidence of septic shock; however, this value
may not always be acceptable. The perfusion pressure should be applied differently based
on the individual patient’s response or organs; for example, when chronic hypertension is
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present, 80–85 mmHg is more reasonable [40]. The shock index is useful for the assessment
of hemodynamic stability by hypovolemia because it is relatively simple and accurate
for evaluating left ventricular dysfunction and circulatory failure [25,27]. However, if the
acute volume loss is insufficient, the increase in the ratio is not definite, and the response
may be inaccurate when the patients have an arrhythmia or use drugs, which affect the
heart rate, such as beta-blockers or calcium channel blockers [41,42]. Hyperlactatemia can
occur not only through overproduction but also through underutilization. When liver and
kidney dysfunction is present, the lactate level may also be increased regardless of hypoxia.
Overproduction of lactate resulting from glycolysis in the absence of oxygen, classified
as type A lactic acidosis, may also be caused by conditions other than septic shock. Lung
lactate is increased in acute lung injury, and hemoglobin transfer disorder or circulatory
failure due to other causes may also result in type A lactic acidosis [43–45]. However,
regardless of the cause of hyperlactatemia, lactate elevation is revealed to be associated
with a worse outcome, and several guidelines suggest lactate-guided resuscitation to
improve clinical outcomes [23,28,46]. Serum procalcitonin concentration, although proved
to be increased by infections, was first identified as a precursor of calcitonin, which is
normally produced from C-cells of the thyroid. Therefore, procalcitonin production may
increase for various reasons other than infections. For example, it may be produced due
to paraneoplastic syndromes, treatment with agents that stimulate cytokines, and other
stressful conditions, such as burns, surgery, and trauma, among others. Conversely, in the
case of infection by fungus or virus, the increase in procalcitonin is not as prominent as
that in bacterial infection despite sepsis [35,36,47]. Therefore, the BADS score, which was
combined for each variable, should be prospectively validated to determine whether the
limitations of these variables will affect the diagnosis of sepsis in actual clinical practice.

Clinically, sepsis presents various manifestations; thus, accurate diagnosis of sepsis
using one or two variables or scores is difficult. In this study, we developed a simple but
more specific model for sepsis to help diagnose sepsis and predict mortality. Based on
our findings, we can carefully assume that the probability of sepsis and 28-day overall
mortality will increase with a high BADS score. Further research is needed for external
validation and applicability in other clinical situations. Sepsis can occur in various cases,
and it is necessary to verify its effectiveness in non-medical ICU settings, especially in
general wards or emergency departments.

5. Conclusions

The BADS score is a simple scoring method, which can detect sepsis more rapidly in
critically ill patients and may be helpful in complementing the other scoring systems in the
prediction of mortality.
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