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Abstract: Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disorder characterized
by itching and eczematous lesions. It is often associated with a personal or familial history of
allergic diseases. Allergic inflammation induced by immunoglobulin E and T-helper type 2 (Th2)
cell responses to common environmental agents has been suggested to play an essential role in
AD pathogenesis. The standard therapies for AD, including topical or systemic agents, focus on
controlling skin inflammation. Recently developed monoclonal antibody to interleukin-4 receptor
alpha or Janus kinase inhibitors can provide significant clinical improvements in patients with AD
by inhibiting Th2 cell-mediated skin inflammation. However, the clinical efficacy of the Th2 cell-
targeted therapy is transient and incomplete in patients with AD. Patients with AD are seeking
a permanent cure. Therefore, the development of novel immunomodulatory strategies that can
improve a long-term clinical outcome and provide a long-term treatment-free clinical remission of AD
(disease-modifying therapy) is needed. Regulatory T (Treg) cells play a critical role in the maintenance
of immune tolerance and suppress the development of autoimmune and allergic diseases. This review
provides three working hypotheses and perspectives for the treatment of AD by Treg cell activation.
(1) A decreased number or function of Treg cells is a critical event that causes the activation of Th2
cells, leading to the development and maintenance of AD. (2) Activation of Treg cells is an effective
therapeutic approach for AD. (3) Many different immunomodulatory strategies activating Treg cells
can provide a long-term clinical improvement of AD by induction of immune tolerance. The Treg
cell-targeted immunomodulatory therapies for AD include allergen immunotherapy, microbiota,
vitamin D, polyvalent human immunoglobulin G, monoclonal antibodies to the surface antigens
of T cell or antigen-presenting cell, and adoptive transfer of autologous Treg cells or genetically
engineered Treg cells expanded in vitro.

Keywords: hypersensitivity; immunomodulation; allergy and immunology; immunotherapy;
immune tolerance; atopic dermatitis; atopic eczema; regulatory T cell

1. Introduction

Atopic dermatitis (AD) is a chronically relapsing inflammatory skin disorder char-
acterized by itching and eczematous lesions. It is often associated with a personal or
familial history of allergic diseases [1–3]. Hypersensitivity reaction (allergic reaction) to
environmental agents has been suggested as a pathogenetic mechanism responsible for the
development and maintenance of chronic skin inflammation in patients with AD [3]. How-
ever, the precise pathogenetic mechanism underlying AD remains unclear. The standard
therapies for AD, including topical corticosteroids or calcineurin inhibitors, focus on con-
trolling skin inflammation [1–3]. A significant number of patients with AD can be further
improved by systemic immunomodulatory agents including corticosteroids, cyclosporine,
or methotrexate. However, there are toxicity risks associated with prolonged use of these
compounds [3]. Monoclonal antibody to interleukin (IL)-4 receptor alpha and Janus kinase
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inhibitors suppressing T-helper type 2 (Th2) cell-mediated inflammation can provide sig-
nificant clinical improvement in patients with moderate-to-severe AD [4–7]. These findings
demonstrate that hypersensitivity reactions mediated by Th2 cells play a key role in the
pathogenesis of AD [4–7]. These results also demonstrate that AD is a systemic immune
disease, and that systemic immunomodulation is an efficient strategy for the treatment of
AD. However, the Th2-targeted therapy could not modulate upstream immune dysfunction
causing Th2 cell activation and could not provide a long-term clinical improvement (LTCI)
of AD. Thus, further development of novel therapeutic modalities for AD that can improve
a long-term clinical outcome and provide a long-term treatment-free clinical remission of
AD (disease-modifying therapy) is required. Studies in patients with AD and AD mouse
models have shown that immune dysfunction caused by a decreased number and/or
function of regulatory T (Treg) cells is critical for Th2 cell activation and immunoglobulin E
(IgE)-mediated inflammation [8,9]. Therefore, an immunomodulatory strategy that acti-
vates Treg cells is an ideal therapeutic approach to induce immune tolerance and achieve
an LTCI of AD. This review provides hypotheses and perspectives on immunomodula-
tory strategies that activate Treg cells to achieve an LTCI of AD by induction of immune
tolerance through antigen-dependent and/or antigen-independent stimulations.

2. Unmet Needs of Patients with AD

Patients with AD are seeking a permanent cure. This fact is supported by the persis-
tence of various complementary and alternative therapies for AD [10], as well as multiple
internet and social media contents created by patients with AD who want to share their
personal experiences on successful AD self-management. However, physicians are ex-
plaining to patients suffering from AD that there is still no cure for AD and that it should
be managed by continuous medical treatments [3]. This significant mismatch between
patient’s needs and current medical therapies for AD necessitates further development of
novel immunomodulatory strategies to achieve an LTCI of AD.

3. Hypothesis on the Pathogenesis of AD

AD is a multifactorial disorder caused by multiple pathogenic elements, including
genetic predisposition, environmental triggers, immune dysfunction, hypersensitivity reac-
tion, chronic skin inflammation, and skin barrier defect [2,3]. Unfortunately, the precise
interactions among the multiple pathogenic elements involved in the development and
maintenance of AD are not fully understood. Epidemiological and experimental evidence
suggests that an impairment of immune tolerance state caused by decreased number and/or
function of Treg cells resulting from the exposure to various environmental toxicants is
responsible for a rapidly increased prevalence of allergic diseases in the industrialized
world [3,11–14]. In this hypothetical pathogenesis model for AD, a human subject with a
genetic predisposition for the development of AD is exposed to environmental toxicants
(such as air pollution, volatile organic chemicals, phthalates, and bisphenol A) through the
respiratory mucosa, gastrointestinal mucosa, or skin. The exposure to environmental toxi-
cants decreases the number and/or function of Treg cells and impairs immune homeostasis
(loss of immune tolerance state) in the subject. The toxicant-induced decreased number
and/or function of Treg cells induces hypersensitivity in the human subject through the
activation of Th2 cells and the development of an IgE response to common environmental
agents. Exposure to sensitized allergens and/or chemical irritants induces a hypersensitiv-
ity reaction and chronic inflammation of the skin, which induces and maintains the clinical
manifestations of AD (pruritus, dryness, and eczema) (Figure 1).
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Figure 1. Hypothetical pathogenesis model for atopic dermatitis. Th2 cells, T-helper type 2 cells; IgE,
immunoglobulin E.

Based on the above hypothesis on AD pathogenesis, a decreased number and/or
function of Treg cells suppressing IgE and Th2 cells plays a critical role in AD pathogenesis.
Therefore, immunomodulatory strategies that activate Treg cells may be a useful therapeutic
approach for inducing an LTCI or long-term treatment-free clinical remission of AD (disease-
modifying therapy) by induction of immune tolerance (recovery of immune homeostasis).

4. Previous Reports on the Long-Term Clinical Improvement of AD

Previous reports have suggested that an LTCI of AD can be achieved through three
methods. First, a marked change in the living environment, also known as climatotherapy
(relocation of a patient to a different region with a beneficial climate such as a foreign
country with favorable weather and clean air), has been reported to induce an LTCI of
AD [15,16]. However, the LTCI induced by a marked change in the living environment
usually disappears shortly after the patient returns to their previous environment, indicat-
ing that change in environmental factors alone cannot normalize the disordered immune
system of patients with AD [15,16]. Second, allergen immunotherapy induces an LTCI in
some patients with AD [17,18]. Multiple clinical studies have reported an LTCI of AD after
allergen immunotherapy [17–20]. Third, up to 70% of children with AD experience a natu-
ral LTCI of AD before puberty [21]. Induction of immune tolerance (recovery of immune
homeostasis) is the most probable mechanism of an LTCI observed in children with AD [3],
although scientific studies could not directly demonstrate this hypothesis. Mimicking the
immunological mechanism responsible for the natural LTCI of AD in children (induction of
immune tolerance) may be an ideal therapeutic approach for achieving an LTCI of AD [3].
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5. Five Questions and Three Hypotheses on the Regulatory T Cell-Targeted
Immunomodulatory Strategies to Achieve a Long-Term Clinical Improvement of AD

The present author developed five key questions on the immune mechanisms that
induce natural LTCI in children with AD and the LTCI observed after allergen immunother-
apy in patients with AD (Table 1). Additionally, the present author proposes three working
hypotheses and perspectives on immunomodulatory strategies to achieve an LTCI of AD
(Table 2). These hypotheses and perspectives suggest that various immunomodulatory
strategies activating Treg cells can induce an immune tolerance and achieve an LTCI in
patients with AD.

Table 1. Five questions on the immune mechanism responsible for a long-term clinical improvement
observed in patients with atopic dermatitis.

1. What is the mechanism of natural induction of a long-term clinical improvement of atopic
dermatitis in children?

2. Is the induction of immune tolerance responsible for a natural long-term clinical
improvement of atopic dermatitis in children?

3. Is the activation of type 1 regulatory T cells a key mechanism inducing a natural long-term
clinical improvement of atopic dermatitis?

4. Is the activation of type 1 regulatory T cells a common mechanism inducing a long-term
clinical improvement of atopic dermatitis by allergen immunotherapy and a natural
long-term clinical improvement in children with atopic dermatitis?

5. Can various kinds of immunomodulatory strategies activating regulatory T cells provide a
long-term clinical improvement in patients with atopic dermatitis?

Table 2. Three hypotheses and perspectives to achieve a long-term clinical improvement of atopic
dermatitis by regulatory T cell activations.

1. A decreased number or function of regulatory T cells is a critical event that causes the
activation of Th2 cells, leading to the development and maintenance of atopic dermatitis.

2. Activation of regulatory T cells * is an effective therapeutic approach to achieve a long-term
clinical improvement of atopic dermatitis.

3. Many different immunomodulatory strategies activating regulatory T cells can provide a
long-term clinical improvement of atopic dermatitis by induction of immune tolerance.

* Activation of regulatory T cells means an increase in the number and/or function of regulatory T cells. Th2 cells,
T-helper type 2 cells.

6. Mechanism of Immune Tolerance and Rationale of Regulatory T Cell-Targeted
Immunomodulatory Therapy for AD

Immune tolerance has been historically defined as a state of unresponsiveness of the
immune system to self-antigens and foreign antigens (e.g., proteins and allergens) [22,23].
Prior exposure to a specific antigen has been suggested to induce immune tolerance to
the antigen [22,23]. Immune tolerance is crucial for normal physiology, and defects in
immune tolerance can lead to autoimmune and allergic diseases [24,25]. However, the
present author prefers the term “immune homeostasis” because it is more scientifically
appropriate than “immune tolerance” for several reasons. First, “immune tolerance” can be
misinterpreted as having no immune response to self or foreign antigens. A well-controlled
immune response (immune homeostasis) can maintain a harmoniously controlled immune
response in contrast to an exaggerated immune response that can be harmful to the host. A
low-grade, well-controlled autoimmune response to a self-antigen is physiological, and
this response helps to remove denatured or altered self-antigens [26]. Well-controlled
immune responses to microbial organisms also protect the body from severe infections
(septicemia and viremia) or hyperactivation of the immune system. Hyperactivation of
the immune system induced by viral infection causes uncontrolled systemic inflammation,
cytokine release (cytokine storm), multi-organ failure, and death in the coronavirus disease
2019 [27]. Treg cells are a functionally defined subpopulation of T cells that modulate the
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immune system and play a critical role in immune homeostasis (a well-controlled immune
response to self-antigens and foreign antigens), thereby preventing the development of
autoimmune diseases, allergic diseases, and allograft rejection [28,29]. Animal experiments
have suggested that decreased number and/or function (deficiency or dysfunction) of Treg
cells serves as a key immune abnormality responsible for the development of autoimmune
and allergic diseases [30].

Treg cells are classified as natural Treg cells (nTreg cells) and induced Treg cells (iTreg
cells) [31]. nTreg cells express forkhead box P3 (Foxp3), CD4, and CD25 markers [32–34].
nTreg cells mediate “central immune tolerance” by deleting autoreactive lymphocyte clones
before they develop into fully immunocompetent cells during lymphocyte development in
the thymus [35]. Peripheral immune tolerance is mediated by iTreg cells and develops after
T cells mature and enter the peripheral tissues and lymph nodes [36]. In peripheral immune
tolerance, the immune response to a certain antigen can also be decreased by repeated
antigenic exposure or by antigenic exposure in tolerogenic conditions [36]. iTreg cells arise
extra-thymically from conventional (or naïve) CD4+ helper T cells in the presence of trans-
forming growth factor-β (TGF-β), retinoic acid, and T cell receptor (TCR)-mediated antigen
presentation by antigen-presenting cells (dendritic cells (DCs) or macrophages) in the pe-
ripheral tissue or nearby lymphoid tissue [31]. Among the iTreg cells, the IL-10-producing
CD4+ Treg cells without Foxp3 expression (type 1 Treg cells: Tr1 cells) play a key role
in allergen tolerance and can be induced by allergen immunotherapy in humans [37–40].
Previous studies have indicated that allergen-specific Tr1 cells are the predominant type of
T cell response to allergens in healthy individuals and prevent unwanted hypersensitivity
reactions to environmental antigens, such as house dust mites, pollen, and food [41,42].
There are significant differences in the proportions of three different allergen-specific T cell
subtypes (T-helper type 1: Th1, Th2, and Tr1 cells) in peripheral blood between healthy
non-allergic human subjects and allergic individuals [42]. The imbalance in the ratio of
allergen-specific Th1, Th2, and Tr1 cells appears to be critical in the development of al-
lergic diseases, and recovery of balance among allergen-specific Th1, Th2, and Tr1 cells
may provide remission of allergic diseases, including AD [42]. Therefore, immunomod-
ulatory approaches activating Tr1 cells with antigen-specific and/or antigen-nonspecific
stimulations could induce an LTCI of AD by inducing immune homeostasis (immune
tolerance state).

The presence of inborn errors of immunity (IEI) caused by genetic mutations that affect
the immune system is important scientific evidence supporting the hypothesis that immune
dysfunction resulting from a decreased number and/or function of Treg cells is critical in
the pathogenesis of allergic diseases, including AD [30,43]. IEI are clinically expressed as
increased susceptibility to infections, autoimmunity, allergy, bone marrow failure, and/or
malignancy [44]. In human subjects, mutations of the Foxp3 gene (a master control gene
of Treg cells) resulting in absent or dysfunctional Treg cells are responsible for immune
dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome, which is
clinically characterized by neonatal autoimmune enteropathy, diabetes and thyroiditis, food
allergies, and skin eczema [43,45]. AD is a frequent clinical manifestation observed in IPEX
syndrome [43,45]. Another example is Wiskott–Aldrich syndrome (WAS) [46,47]. WAS
is a rare X-linked recessive disease characterized by eczema, thrombocytopenia, immune
deficiency, and bloody diarrhea [43]. WAS is caused by the genetic defects producing
defective proteins (WAS proteins) that have a central role in actin polymerization and
cytoskeletal rearrangement. Both nTreg cells and iTreg cells are defective in WAS [46]. In
the WAS, the eczematous eruption is indistinguishable from AD when diagnostic criteria
for AD are used and clears dramatically after a successful transplantation of bone marrow
(hematopoietic stem cells) from a healthy donor [47]. This evidence from IEI demonstrates
that Treg cell dysfunction is critically involved in the pathogenesis of the AD [30,43].
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7. Immunomodulatory Strategies Activating Regulatory T Cells for AD:
In Vivo Activation

The Treg cell-targeted immunomodulatory therapies for AD include allergen im-
munotherapy, microbiota, vitamin D, polyvalent human immunoglobulin G (IgG), mono-
clonal antibodies to the surface antigens of T cell or antigen-presenting cell, and adoptive
transfer of autologous Treg cells or genetically engineered Treg cells expanded in vitro
(Table 3).

Table 3. Immunomodulatory strategies activating regulatory T cells for the treatment of atopic dermatitis.

Strategies with proven clinical efficacy by at least one randomized clinical trial

(1) Allergen immunotherapy
(2) Microbial therapy (probiotics)
(3) Vitamin D
(4) Subcutaneous or intramuscular injection of polyvalent human IgG from multiple healthy

blood donors
(5) Intramuscular injection of autologous total IgG
(6) Monoclonal antibody to antigen on the surface of T cells (anti-OX40 antibody)

Strategies without proven clinical efficacy in patients with atopic dermatitis by a clinical trial

(1) Sirolimus (also called rapamycin)
(2) Metformin
(3) Butyrate
(4) Adoptive cell therapy with ex vivo expanded regulatory T cells

IgG, immunoglobulin G.

7.1. Allergen Immunotherapy (Activation of Allergen-Specific Tr1 Cells)

Allergen immunotherapy is a therapeutic approach that repeatedly administers a high
dose of sensitized allergens to patients with allergic diseases either through subcutaneous
injection or sublingual absorption to induce allergen-specific immune tolerance [48]. Based
on a meta-analysis of multiple randomized clinical trials, allergen immunotherapy has been
shown to be clinically beneficial in patients with AD sensitized to inhalant allergens such
as house dust mites [49,50]. Allergen immunotherapy decreases allergic reactions (Th2
cell activation and IgE-mediated reaction) and induces clinical improvement in patients
with allergic diseases through the activation of allergen-specific Treg cells [37–40]. Tr1
cells induced in the peripheral tissue and lymph nodes after repeated administration of a
high dose of an allergen play a key role in the development of allergen-specific immune
tolerance and clinical improvement of allergic diseases [37–40]. The allergen-specific
Tr1 cells induced by allergen immunotherapy downregulate allergic inflammation by
releasing IL-10 and TGF-β, which suppress the proliferation of allergen-specific Th2 cells
and allergen-specific IgE production by B cell and promote the production of protective
allergen-specific IgG antibodies [51]. Allergen immunotherapy increases the number of
allergen-specific Tr1 cells [52]. However, it is unclear how Tr1 cells are induced during
allergen immunotherapy [53]. A recent single-cell analysis study using allergen-specific T
cell clones obtained from patients with allergic rhinitis suggested that allergen-specific Treg
cells differentiate from allergen-specific Th2 cells during sublingual immunotherapy [54].

A recent systematic review and meta-analysis of 23 randomized, controlled trials,
including 1957 patients, on allergen immunotherapy for AD showed that subcutaneous
and sublingual immunotherapy to aeroallergens, particularly house dust mites, can sig-
nificantly reduce AD severity and improve the quality of life [50]. However, this review
also reported an increased risk of adverse events with subcutaneous immunotherapy
compared to sublingual immunotherapy [50]. It took months (median five months) for
allergen immunotherapy to provide clinical improvement in patients with AD sensitized
to aeroallergens, and the probability of a marked reduction in the clinical severity of AD
(50% or more from the baseline) was observed in 40% of the patients who received allergen
immunotherapy and 26% of those who did not receive allergen immunotherapy [50]. In



Life 2023, 13, 1674 7 of 21

1960, Tuft reported that subcutaneous immunotherapy using inhaled allergens in 101 pa-
tients with AD provided a favorable clinical response in 77.2% of the patients [20]. Here,
clinical exacerbation of AD was observed in 5.0% (5/101 patients) of patients within 12 to
48 h after subcutaneous immunotherapy (“delayed adverse reaction”), and four of the five
patients discontinued the allergen immunotherapy [20]. The risk of systemic adverse effects
(anaphylaxis and delayed exacerbation of AD), relatively low success rate (<50%), and
late-onset clinical efficacy (several months) are three major reasons that preclude the clinical
application of allergen immunotherapy for the treatment of AD in real clinical practice.

7.2. Microbial Therapy

Probiotics, which are non-invasive, non-pathogenic bacteria with known health-
promoting effects, are primarily found in fermented foods [55,56]. Intake of an adequate
quantity of probiotics can be helpful for the homeostasis of the gut and immune system [57].
Probiotics can prevent AD in mice and humans [58–60]. Lactobacillus supplementation acti-
vates Treg cells in mouse models of allergy [61,62]. In recent systematic reviews and meta-
analyses, probiotic strains composed of a mixture of multiple bacterial strains, including
Lactobacillus and Bifidobacterium, were shown to provide significant clinical improvements
in both pediatric and adult patients with AD [63,64] and reduce the risk of developing AD
when administered to pregnant women, infants, or both [65]. However, there is controversy
about the clinical efficacy of probiotics in the treatment of AD because there also have been
systematic reviews and meta-analyses showing limited effectiveness of probiotics in the
treatment of AD [66,67]. Further clinical trials are needed to evaluate the clinical usefulness
of probiotics in the treatment of AD.

Prebiotics are non-digestible food ingredients (mainly carbohydrates and fibers) that
promote the growth of healthy gut microflora by creating a nutrient-rich intestinal en-
vironment in which “good bacteria” may thrive. These beneficial bacteria in the large
intestine, mainly Lactobacillus and Bifidobacterium, selectively ferment carbohydrates and
fibers [68]. This process increases the number of commensal bacteria and the amount
of acidic fermentation products, such as lactate and unbranched short-chain fatty acids
(SCFAs, mainly acetate, butyrate, and propionate). Prebiotics can indirectly influence the
immune system in patients with AD by supporting the growth of probiotics that produce
SCFAs [69]. SCFAs exert anti-inflammatory effects in the intestine by acting on intestinal
epithelial cells and facilitating the generation of iTreg cells [69]. A randomized, controlled
trial which included 29 infants with AD reported significant clinical improvement after
treatment with prebiotics (kestose) for 12 weeks [70]. Due to the lack of well-controlled,
randomized clinical trials on prebiotics for AD, further investigations are needed [71]. Fecal
microbiota transplantation (FMT) is the process of transferring fecal bacteria and other
microbes from a healthy individual into another individual to restore the gut microbiota of
a diseased individual. FMT increases the secretion of IL-10 from CD4+ T cells in mice [72].
FMT also reduced the clinical severity of AD and restored the Th1/Th2 ratio in an AD
mouse model [73]. In an uncontrolled pilot clinical trial, FMT performed four times for
six weeks (from week 4 to week 10) induced significant clinical improvement (decrease in
clinical severity score of AD by more than 75% from the baseline) at week 18 in six (66.7%)
out of nine adult patients with moderate-to-severe AD that had not been improved by prior
topical and systemic therapies [74].

7.3. Vitamin D

Vitamin D increases the number and function of Treg cells [75–77]. DCs treated with
active vitamin D (1,25-dihydroxycholecalciferol, also called calcitriol) become “tolerogenic”
for the T cells, and calcitriol treatment induces the expression of the inhibitory cell-surface
molecule programmed death ligand-1 on DCs and induces the differentiation of Treg cells
from naïve T cells [78]. Calcitriol also acts directly on human CD4+ T cells, promoting
the development of an IL-10-secreting CD4+ Treg cell population [79–81]. In BALB/c
mice, dietary vitamin D3 supplementation significantly inhibited dinitrofluorobenzene-
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induced ear swelling and increased the number and suppressive activity of Treg cells in
draining lymph nodes [82]. A recent systematic review of randomized, clinical trials on oral
supplementation of vitamin D showed a significant clinical benefit in patients with AD [83].

7.4. Polyvalent Human IgG from Multiple Healthy Blood Donors

Intravenous administration of polyvalent human IgG, purified from the plasma pool
of multiple healthy voluntary blood donors, has primarily been used to treat patients
with primary immunodeficiency diseases associated with decreased immunoglobulin
production [84]. Owing to its immunomodulatory effects, this therapy has also been used
for the treatment of various autoimmune and allergic diseases [85,86]. In vitro incubation
of polyvalent human IgG with purified CD4+CD25high T cells increased the expression of
intracellular IL-10, suggesting direct activation of Treg cells by polyvalent human IgG [87].
Intravenous administration of heterologous polyvalent human IgG induced a significant
expansion of nTreg cells (CD4+CD25+Foxp3+) in patients with autoimmune diseases, includ-
ing immune thrombocytopenia and eosinophilic granulomatosis with polyangiitis [88,89].
Therefore, Treg cell activation seems to be one of the major mechanisms responsible for the
immunomodulatory and anti-inflammatory effects of polyvalent IgG [87,90,91]. However,
clinical trials investigating the clinical efficacy of high-dose intravenous polyvalent IgG
therapy in adult patients with severe AD did not show a significant clinical benefit [92].
The clinical efficacy and cost-effectiveness of high-dose intravenous polyvalent human IgG
therapy for AD has not been completely evaluated yet. In contrast, subcutaneous adminis-
tration of a mixture of histamine and polyvalent IgG (“Histaglobin”) significantly reduced
the clinical severity of AD in a multicenter randomized, double-blind, controlled study [93].
Intramuscular administration of placenta-derived polyvalent IgG (“Allergobulin”) also
significantly reduced the clinical severity of AD in a randomized, double-blind, controlled
study [94]. The reason for the discrepancy in the clinical efficacy of polyvalent human
IgG therapies for AD according to the routes of administrations (intravenous compared to
subcutaneous or intramuscular) should be further evaluated in future studies.

7.5. Intramuscular Administration of Autologous Polyvalent IgG

“Jerne’s idiotypic network theory” (Jerne, 1974) proposes that antigen-binding sites (id-
iotypes) of autologous immunoglobulins are sufficiently immunogenic to induce antibody
responses (anti-idiotype antibodies) in the same host [95,96]. Induction of an anti-idiotypic
immune response has been suggested as one of the major mechanisms responsible for the
development of immune tolerance (immune homeostasis) [97]. Physiological idiotype-
anti-idiotype antibody responses maintain immune homeostasis by controlling excessive
immune responses to self or foreign antigens [96–98]. Stimulation of anti-idiotypic im-
munomodulation has been suggested as a promising therapeutic approach for allergic
diseases [99]. However, there is scarce evidence supporting the clinical efficacy of anti-
idiotypic immunomodulatory therapy in human subjects with allergic diseases. The present
author hypothesized that intramuscular administration of autologous total IgG could in-
duce an anti-idiotypic immunomodulatory effect and clinical improvement in patients
with allergic diseases [100–105]. To prove this concept, the clinical efficacy, safety, and
immunomodulatory effects of intramuscular administration of autologous total IgG were
evaluated in a randomized, double-blind, placebo-controlled study involving 51 adolescent
and adult patients with moderate-to-severe AD [104]. In this study, eight weekly intramus-
cular administrations of 50 mg autologous total IgG for seven weeks significantly decreased
the clinical severity of AD and increased serum levels of IL-10 and interferon (IFN)-γ at
weeks 4, 8, 12, and 16 compared to the baseline without serious adverse events [104]. These
results showed that intramuscular administration of autologous total IgG could provide
clinical improvement and systemic immunomodulatory effects in patients with AD. To
further evaluate the mechanism of immunomodulation induced by intramuscular adminis-
tration of autologous total IgG, changes in peripheral blood T cells were analyzed before
and after administration in 13 healthy human subjects [105]. Intramuscular administration
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of autologous total IgG significantly increased the percentage of IL-10-producing CD4+ T
cells and the percentage of IFN-γ-producing CD3+ T cells in healthy human subjects. These
results suggest that intramuscular administration of autologous total IgG activates Tr1
cells in healthy human subjects [105]. Interestingly, long-term clinical improvements and
decreases in serum total IgE concentrations lasting for more than 36 weeks were observed
in two of three patients with severe AD who were followed up for more than two years after
eight intramuscular administrations of 50 mg autologous total IgG for four weeks [102].

Major limitations of previous studies on the clinical efficacy and immunomodulatory
efficacy of intramuscular administration of autologous total IgG in patients with AD
and healthy human subjects include the lack of knowledge on the detailed molecular
mechanism of Treg cell activation induced by intramuscular administration of autologous
total IgG. An in vitro study showed that pooled IgG purified from AD patients induced
significantly higher productions of IL-10 and IL-17 from cultured thymic CD4+ T cells
than pooled purified IgG from healthy blood donors (polyvalent IgG for intravenous
administration) [106]. Other in vitro experiments showed that pooled IgG purified from AD
patients induced significantly higher productions of IFN-γ and IL-22 from cultured thymic
gamma-delta T cells compared to pooled purified IgG from healthy blood donors [107].
These experimental results suggest that polyvalent IgG from AD patients might more
efficiently activate Treg cells than polyvalent IgG from healthy blood donors by direct
interactions between idiotypes of IgG and T cells without the help of antigen-presenting
cells (“hook without bait theory”) as previously proposed [108]. However, further studies
are necessary to evaluate detailed immunological mechanisms producing a therapeutic
efficacy of intramuscular administration of autologous total IgG in patients with AD.

7.6. Monoclonal Antibodies to Antigens on the Surface of T Cells or Antigen-Presenting Cells

OX40 (CD 134) is expressed only in activated T cells, and its ligand OX40 ligand
(OX40L, CD252) is expressed only on activated antigen-presenting cells [109]. OX40L binds
to OX40 on T cells and prevents activated T cells from dying, subsequently increasing
cytokine production. OX40 plays a critical role in the maintenance of an immune response
beyond the first few days, enhances the survival of activated T cells, and plays a crucial role
in both Th1- and Th2-mediated reactions in vivo [110]. OX40 and OX40L are only induced
after antigen or TCR stimulation, and the OX40–OX40L interaction is a key regulator of T
cell responses [111]. OX40 signaling can promote effector T cell proliferation and inhibit
Treg cell function [109]. OX40 has been suggested as a potential immunotherapeutic target
for cancer, inflammatory, and autoimmune diseases [109]. Blocking the OX40–OX40L in-
teraction and OX40 signaling enhanced Treg cell proliferation under in vitro conditions;
this approach has been suggested as a novel strategy to increase Treg cells and suppress
autoimmunity [112]. An agonist anti-OX40 monoclonal antibody induced Treg cell ex-
pansion in a mouse experimental model [113]. In a non-human primate graft versus host
disease model using the transplantation of allogeneic hematopoietic stem cells, concur-
rent blockade of OX40L with monoclonal antibody (KY1005) and mechanistic target of
rapamycin (mTOR) with sirolimus increased Treg cells in the blood and prevented graft
rejection [114]. In a multicenter, double-blind, placebo-controlled phase 2b clinical study,
an anti-OX40 antibody (rocatinlimab) provided significant clinical improvement in patients
with moderate-to-severe AD [115]. Interestingly, a significant proportion of patients who
achieved marked clinical improvement (achieving at least a 75% reduction in the clinical
severity score of AD from the baseline) after anti-OX40 antibody therapy for 36 weeks
experienced prolonged clinical improvement for more than 20 weeks after discontinuation
of the therapy [115]. Further clinical studies on the possibility of inducing an LTCI of AD
by anti-OX40 antibody therapy are needed.
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7.7. Other Chemical Candidates for Regulatory T Cell-Targeted Therapy of AD

There are several other chemicals (small molecules) that have been shown to activate
Treg cells, but their immunomodulatory effects and clinical efficacy in patients with AD
have not been evaluated yet.

7.7.1. Sirolimus

Sirolimus (also known as rapamycin) is a macrolide compound with immunosup-
pressant activity that has been used to prevent organ transplant rejection [116]. It is an
inhibitor of the mTOR and inhibits the activation of T and B cells by reducing their sen-
sitivity to IL-2 [117]. Human Treg cells expand efficiently in the presence of sirolimus
under experimental cell culture conditions [118]. Sirolimus also provided major clinical
improvements and expansion of peripheral blood Treg cells in patients with systemic lupus
erythematosus [119]. Topical application of sirolimus ointment reduced the clinical severity
of eczema in an AD mouse model [120].

7.7.2. Metformin

Metformin is a first-line therapeutic agent for type 2 diabetes [121]. It activates adeno-
sine monophosphate-activated protein kinase, which inhibits mTOR complex1, controlling
the activation and differentiation of T and B cells, thereby producing immunomodula-
tory and anti-inflammatory effects [121]. Oral administration of metformin improved
autoimmune arthritis in a mouse model of collagen-induced arthritis [122]. In the collagen-
induced arthritis mouse model and in vitro experiments, metformin treatment decreased
Th17 cell differentiation and enhanced Treg cell differentiation [122,123]. In a random-
ized, double-blind, placebo-controlled clinical trial, patients with active rheumatoid arthri-
tis receiving continuous methotrexate therapy were further treated with additional met-
formin (1000 mg/day) or placebo [124]. After 12 weeks of treatment, metformin-treated
patients showed better clinical outcomes and higher remission rates than placebo-treated
patients [124]. Oral administration of metformin provided a significant attenuation of skin
inflammation in the AD mouse model [125].

7.7.3. Butyrate

Butyrate is one of the SCFAs found in animal fat and plant oils, bovine milk, breast
milk, butter, parmesan cheese, body odor, vomit, and as a product of anaerobic fermen-
tation in the colon [126–128]. Highly fermentable fiber residues (e.g., resistant starch,
oat bran, pectin, and guar) are transformed by colonic bacteria into SCFAs including
butyrate [128,129]. Butyrate produced in the colon plays a key role in maintaining immune
homeostasis both locally (in the gut) and systemically (via circulating butyrate) [130]. Bu-
tyrate promotes the differentiation of Treg cells [130,131] and is the most potent promoter
of intestinal Treg cells among the various SCFAs [131]. In patients with ulcerative colitis, an
enema with butyrate decreased inflammation and bleeding [132]. In an AD mouse model,
oral intake of sodium butyrate alone or in combination with probiotics increased serum
levels of IL-10 and mitigated AD symptoms [133].

7.8. Adoptive Cell Therapy with Ex Vivo Expanded Regulatory T Cells

Recent technical developments have enabled adoptive cell therapy (ACT) with ex
vivo expanded Treg cells. ACT with Treg cells can be achieved using three methods:
polyclonal Treg cells without antigen stimulation, antigen-stimulated and expanded Treg
cells, and Treg cells with a genetically engineered chimeric antigen receptor. Adoptive
transfer of Treg cells has been proposed to treat T cell-mediated immune diseases including
organ transplant rejection, autoimmune diseases, and allergic diseases [134,135]. However,
human clinical studies using the adoptive transfer of ex vivo expanded Treg cells for AD
or other allergic diseases have not been conducted. Future studies on the clinical efficacy
and immunomodulatory effects of the adoptive transfer of ex vivo expanded Treg cells in
patients with AD or animal models of AD are needed.
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7.8.1. Autologous Polyclonal Regulatory T Cells

Treg cells can be isolated from the peripheral blood of human subjects and cultured
in vitro to expand [136]. In a human clinical trial involving 12 patients with type 1 dia-
betes (autoimmune diabetes), intravenous infusion of autologous nTreg cells (CD4+CD25+

Foxp3+ T cells purified from patients’ peripheral blood and expanded in vitro using beads
coated with anti-CD3 and anti-CD28 antibodies, IL-2, and autologous serum) resulted in a
significant decrease in the requirement of exogenous insulin (in 8 of 12 patients) compared
to the untreated control group (in 2 of 10 patients) without significant adverse events [137].
In a human clinical trial for kidney transplantation, adoptive cell transfer of autologous
Treg cells by intravenous infusion was effective and well-tolerated [138]. In a phase I/IIa
clinical trial investigating Treg cell therapy in kidney transplantation, patients engrafted
with autologous Treg cells had similar rejection rates compared to the control group receiv-
ing the standard immunosuppression with basiliximab (anti-CD25) but displayed reduced
infection rates [138]. In another human trial for patients with kidney transplantation, a
single-dose intravenous infusion of autologous nTreg cells was performed seven days
after kidney transplantation in 11 patients undergoing living-donor kidney transplanta-
tion [139]. Stepwise tapering of triple immunosuppression (prednisolone, mycophenolate,
and tacrolimus) to low dose tacrolimus monotherapy was attempted until week 48. Sta-
ble monotherapy immunosuppression (without prednisolone) was achieved in eight of
11 (73%) patients that received nTreg cells, while the control group remained on standard
dual or triple drug immunosuppression (with continuous prednisolone) (p = 0.002). Both
the nTreg cell treatment and control groups had 100% three-year allograft survival and
similar clinical and safety profiles [139]. In future clinical or preclinical studies on AD,
it will be possible to conduct a study in which autologous nTreg cells derived from the
peripheral blood of patients with AD are expanded in vitro and subsequently re-injected
into the same patients.

7.8.2. Autologous Antigen-Stimulated Regulatory T Cells

Theoretically, an ACT with an antigen-specific approach might be more efficient
with higher specificity than polyclonal Treg cells without antigen stimulation [140]. Treg
cells obtained from kidney allograft recipients can be stimulated by antigen-presenting
cells from the kidney graft donor to generate autologous Treg cells reactive to donor
alloantigens [141]. Antigen-specific Tr1 cells can be enriched in cultured CD4+ T cells that
were stimulated with allogeneic IL-10-producing DCs generated from CD14+ monocytes
(from the kidney donor) in the presence of IL-10 [142]. These allospecific Tr1 cells showed
specific immune suppression to donor antigens (alloantigens) in vitro and maintained
a tolerogenic gene expression profile in vivo [142]. However, human clinical studies in
kidney transplantation with intravenous administration of donor alloantigen-stimulated
autologous Treg cells resulted in significant rejection risk following immunosuppressive
drug weaning [143]. Further developments are needed before antigen-specific Treg cell
therapy can be applied clinically. In future clinical or preclinical studies of AD, autologous
Treg cells derived from patients with AD sensitized to allergens can be cultured and
expanded with allergens (e.g., house dust mite allergens or cat allergens) in vitro and
re-infused into patients with AD.

7.8.3. Genetically Engineered Regulatory T Cells

Genetic modification of polyclonal Treg cells to express chimeric antigen receptor
(CAR) can be used to recognize a specific antigen, thereby providing antigen-specific Treg
cells [144]. The advantage of genetically engineered Treg cell therapy is the reduction in
side effects due to non-specific immune suppression by Treg cells [145]. Treg cells can be
isolated from the peripheral blood of healthy and allergic donors, cultured with IL-2 for
polyclonal Treg expansion, and then transformed into genetically engineered Treg cells by
transduction with retroviruses, lentiviruses, or adenovirus to express CAR. Following Good
Manufacturing Practice regulations, expanded cells can be infused into patients [146]. CAR
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is a single protein complex consisting of a single chain antibody fragment that recognizes the
antigen in the outer part, a hinge, and an inner part with CD3ζ and CD28/4-1BB domains.

The use of CD8+ cytotoxic T cells bearing antigen-specific CAR, designed to redirect
T cells from cancer patients to antigen-expressing tumor cells, is the main ACT strategy
for cancer therapy [146,147]. The first CAR-T cell therapy approved by the Food and
Drug Administration is tisagenlecleucel (CTL019; trade name Kymriah). Tisagenlecleucel
is a CD19-directed genetically modified autologous T cell immunotherapeutic agent for
the treatment of adult patients with relapsed or refractory follicular lymphoma and B
cell precursor acute lymphoblastic leukemia [148]. CAR-T cell therapy for hematological
malignancies has been primarily designed to recognize the CD19 antigen on the surface of
B cells, including normal lymphocytes and leukemic cells. CD19 was chosen as a target
for immunotherapy because it is uniformly expressed in B cell leukemia/lymphomas and
healthy B cells but not in other normal tissues [149]. The production of tisagenlecleucel
involves reprogramming the patient’s own T cells with a transgene encoding CAR to
identify and eliminate CD19-expressing cells. Upon binding to CD19-expressing cells,
the CAR transmits a signal that promotes T cell expansion [150]. The major advantage of
CAR-T cells is their ability to be human leukocyte antigen-independent. Obviating the
need for antigen presentation in human leukocyte antigen makes this technology more
accessible and universal [151]. CAR-engineered T cell therapy is becoming the most promis-
ing approach in cancer treatment, involving reprogramming of the patient’s own T cells
with a CAR-encoding transgene to identify and eliminate cancer-specific surface antigen-
expressing cells. However, the adverse effects of CD8+ cytotoxic CAR-T cells are severe
and are characterized by over-activation of the immune system, including cytokine release
syndrome, encephalopathy syndrome, hemophagocytic lymphohistiocytosis, tumor lysis
syndrome, B cell aplasia, and acute respiratory distress syndrome [152–154]. Major trials
have indicated that the incidence rate of cytokine release syndrome was 77% in patients
treated for acute lymphoblastic leukemia [155] and 57–93% in non-Hodgkin lymphoma
patients [156,157].

Recently, the CAR approach was evaluated in an ovalbumin (OVA) allergy mouse
model. In this study, the CAR Treg cell was composed of OVA linked with the transmem-
brane and signal transduction domains, CD28-CD3ζ [158]. This CAR Treg cell therapy
decreased the anaphylactic reaction induced by intraperitoneal OVA injection in the mouse
model [158]. Under cell culture conditions, Treg cells transduced with Bet v 1-specific TCR
suppressed allergen-specific effector T cell proliferation and cytokine production [159].

7.8.4. Limitations of Adoptive Cell Therapy with Regulatory T Cells

Human Treg cells display phenotypic plasticity and can be changed into effector T cells
(Th1, Th2, or Th17 cells) in an inflammatory environment, and the effector cells produce
pathogenic cytokines, such as IFN-γ, IL-4, IL-13, and IL-17 [160,161]. The instability of
Treg cells is a crucial limiting factor for the successful development of ACT with Treg cells
in immune diseases [162–165]. The isolation of low-frequency Treg cells from autologous
peripheral blood cells is complex and expensive [166]. Currently, ACT with Treg cells has
important limitations in its cost, clinical efficacy, and safety. Further technical improvements
are needed to achieve a successful clinical application of ACT with Treg cells in AD.

8. Combinations of Different Modalities Activating Regulatory T Cells

Theoretically, combinations of currently available methods that can activate Treg cells
(allergen immunotherapy, microbiota, vitamin D, polyvalent human IgG, and small molec-
ular chemicals) may maximize the clinical improvement of patients with AD. High dose
vitamin D3 enhanced the clinical efficacy and immunomodulatory effects of subcutaneous
allergen immunotherapy in a grass pollen-driven mouse model of asthma [167]. In a
randomized, controlled clinical trial including children with allergic rhinitis, vitamin D
supplementation combined with grass pollen sublingual immunotherapy was more effec-
tive in reducing nasal and asthma symptoms than grass pollen sublingual immunotherapy
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alone [168]. In patients with allergic rhinitis and vitamin D deficiency, vitamin D supple-
mentation in the build-up phase of subcutaneous allergen immunotherapy with house dust
mite extract significantly decreased the symptom–medication score of allergic rhinitis com-
pared to subcutaneous allergen immunotherapy alone [169]. In a previous double-blind,
placebo-controlled, randomized clinical trial, repeated intradermal injections of immune
complexes made of house dust mite antigens and autologous antibodies to house dust
mite antigens produced significant clinical improvement in patients with AD [170]. These
examples suggest that various combinations of different modalities activating Treg cells
can improve a long-term clinical outcome of AD (Figure 2).
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9. Conclusions

Immune dysfunction resulting from a decreased number and/or function of Treg
cells is critical in the pathogenesis of allergic diseases, including AD. Treg cell activation
could be a common immune mechanism responsible for the LTCI observed in patients with
AD after allergen immunotherapy and the natural clinical remission observed in children
with AD. Therefore, an immunomodulatory strategy that activates Treg cells could be
an ideal therapeutic approach to achieve an LTCI of AD. The present author proposes a
hypothesis that many different immunomodulatory strategies inducing a sufficient long-
term activation of Treg cells can improve the long-term clinical outcome and provide a long-
term treatment-free clinical remission of AD by induction of immune tolerance (Figure 3).
Further studies on the clinical efficacy of various Treg cell-targeted immunomodulatory
therapies should be conducted to improve the long-term clinical outcome in patients
with AD.
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