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Abstract: With recent advancements in biological research, long non-coding RNAs (lncRNAs) with
lengths exceeding 200 nucleotides have emerged as pivotal regulators of gene expression and cellular
phenotypic modulation. Despite initial skepticism due to their low sequence conservation and
expression levels, their significance in various biological processes has become increasingly apparent.
We provided an overview of lncRNAs and discussed their defining features and modes of operation.
We then explored their crucial function in the hepatocarcinogenesis process, elucidating their complex
involvement in hepatocellular carcinoma (HCC). The influential role of lncRNAs within the HCC
tumor microenvironment is emphasized, illustrating their potential as key modulators of disease
dynamics. We also investigated the significant influence of N6-methyladenosine (m6A) modification
on lncRNA function in HCC, enhancing our understanding of both their roles and their upstream
regulators. Additionally, the potential of lncRNAs as promising biomarkers was discussed in liver
cancer diagnosis, suggesting a novel avenue for future research and clinical application. Finally, our
work underscored the dual potential of lncRNAs as both contributors to HCC pathogenesis and
innovative tools for its diagnosis. Existing challenges and prospective trajectories in lncRNA research
are also discussed, emphasizing their potential in advancing liver cancer research.

Keywords: hepatocellular carcinoma; long non-coding RNA; tumor microenvironment; N6-
methyladenosine; biomarker

1. Introduction

In recent decades, advancements in biological technology have profoundly evolved our
comprehension of genomic information. This shift was largely attributed to the discovery
of non-coding RNAs (ncRNAs), which, while not encoding proteins, regulate various
biological processes [1]. The categories of ncRNAs—microRNAs (miRNAs), circular RNAs
(circRNAs), PIWI-interacting RNAs (piRNAs), and small nucleolar RNAs (snoRNAs)—
each have unique roles, such as gene expression regulation, miRNA sponging, genome
stability maintenance, and guiding chemical RNA modifications, respectively [2,3].

Among these ncRNAs, long non-coding RNAs (lncRNAs)—transcripts longer than
200 nucleotides—have emerged as crucial regulators in determining cellular fate. They
serve as critical molecular players in diverse biological processes, including X-chromosome
inactivation and genomic imprinting [4]. These lncRNAs were initially considered as
non-functional transcripts due to their generally low sequence conservation and expression
levels. However, the increasing number of publications highlighting the dynamic expres-
sion and biological functions of lncRNAs, together with the advent of novel technologies
facilitating their identification and characterization, have redefined our understanding of
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this perception [5]. Moreover, their aberrant expression and function have been implicated
in various cancers, particularly hepatocellular carcinoma (HCC) [6].

This review explored the recent advances in research on the complex roles and mecha-
nisms of lncRNA dysregulation in HCC. We provided a comprehensive exploration of their
implications in disease pathogenesis and potential as diagnostic markers. Additionally, we
included information specifically on the N6-methyladenosine (m6A) modification, offering
a more detailed understanding of its influence. Luo et al. concluded a critical facet of
lncRNA biology is the m6A modification; it represents the most predominant internal
modification observed in eukaryotic RNAs, including lncRNAs, exerting a pivotal role in
RNA metabolism and functionality [7]. The modulation of lncRNA structures and functions
by m6A introduces additional layers of regulatory intricacy [7,8]. Importantly, Sivasudhan
et al. highlighted in their review the significance of lncRNA alterations via m6A modi-
fications, emphasizing their potential influence on disease progression and therapeutic
outcomes in HCC [9]. Finally, we identified current challenges and discussed potential
future research directions in this compelling field. Despite the uncertainty and controversy
that have involved lncRNA research, these molecules play pivotal roles in regulating cel-
lular functions, with significant implications for HCC, highlighting their significance in
biomedical research.

2. Understanding lncRNA: Its Definition and Mechanism of Action

LncRNAs play a pivotal role in the intricate regulation of gene expression. As pre-
viously reviewed, lncRNAs’ influence spans multiple levels of gene regulation, from
reshaping chromatin structures to guiding post-transcriptional modifications [10,11]. A
fundamental mechanism underlying their function is their ability to interact with various
cellular components, such as DNA, RNA, and proteins [12]. Through these interactions,
lncRNAs become essential modulators of both cellular architecture and activity.

2.1. Signal

One of the primary modes of lncRNA function is acting as signals (Figure 1A). These
molecular indicators are transcribed in response to diverse cellular stimuli, serving as
indicators of specific cellular states or events. Their transcription often reflects changes in
the cellular environment, such as stress, differentiation, or developmental cues. For instance,
the lncRNA HOTAIR is transcribed in response to certain oncogenic signals and plays a
pivotal role in regulating gene expression patterns associated with cancer progression [13].
Similarly, XIST is transcribed during early female embryonic development, signaling the
initiation of X-chromosome inactivation [4]. These lncRNAs, by acting as signals, provide
the cell with a dynamic mechanism to rapidly respond to internal or external changes,
ensuring appropriate cellular reactions and adaptations. Their signaling role underscores
the complexity and versatility of the non-coding genome in cellular regulation and function.

2.2. Decoy

Another well-known function of lncRNAs is acting as decoys (Figure 1B). In this ca-
pacity, lncRNAs can bind to transcription factors or other proteins, effectively sequestering
them away from their target genomic loci [14,15]. For instance, the lncRNA Growth Arrest-
Specifc 5 (GAS5) serves as a decoy by binding to the glucocorticoid receptor (GR). Under
conditions of growth arrest, GAS5 accumulates and binds to the DNA-binding domain of
the GR. This prevents the GR from binding to its glucocorticoid response elements (GREs)
on DNA, thereby inhibiting the transcription of glucocorticoid-responsive genes. As a
result, GAS5 plays a crucial role in modulating cell growth and the cellular response to
stress through its decoy function [16]. These lncRNA–protein interactions are responsive to
cellular conditions, with factors such as environmental stress potentially affecting lncRNA
expression levels and, in turn, their decoy function.
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Figure 1. Diverse mechanisms of lncRNAs’ functions in cellular regulation. (A) Signal. LncRNAs act 
as molecular indicators, responding to various cellular stimuli. (B) Decoy. LncRNAs can bind and 
sequester transcription factors or other proteins, preventing them from interacting with their target 
genomic loci. (C) Guide. LncRNAs direct chromatin-modifying enzymes to specific genomic re-
gions, enabling targeted epigenetic modifications. (D) Scaffold. LncRNAs facilitate the formation of 
multi-protein complexes, providing a structural platform for these assemblies. (E) Enhancer RNA. 
LncRNAs can function as enhancers, looping DNA to bring distant regions into proximity for tran-
scriptional activation. (F) miRNA Sponge. LncRNAs can act as sponges for miRNAs, sequestering 
them and preventing them from binding to their target mRNAs, thus inhibiting miRNA-mediated 
gene repression. 
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Figure 1. Diverse mechanisms of lncRNAs’ functions in cellular regulation. (A) Signal. LncRNAs
act as molecular indicators, responding to various cellular stimuli. (B) Decoy. LncRNAs can bind
and sequester transcription factors or other proteins, preventing them from interacting with their
target genomic loci. (C) Guide. LncRNAs direct chromatin-modifying enzymes to specific genomic
regions, enabling targeted epigenetic modifications. (D) Scaffold. LncRNAs facilitate the formation
of multi-protein complexes, providing a structural platform for these assemblies. (E) Enhancer
RNA. LncRNAs can function as enhancers, looping DNA to bring distant regions into proximity for
transcriptional activation. (F) miRNA Sponge. LncRNAs can act as sponges for miRNAs, sequestering
them and preventing them from binding to their target mRNAs, thus inhibiting miRNA-mediated
gene repression.

2.3. Guide

LncRNAs can also act as guides, directing the localization of chromatin-modifying
enzymes to specific genomic regions (Figure 1C). This targeted recruitment enables precise
epigenetic modifications, which can subsequently lead to changes in gene expression
profiles. As an example, a recent study demonstrated that TARID (TCF21 antisense RNA
inducing demethylation) functioned by partnering with growth arrest and DNA-damage-
inducible alpha protein (GADD45A). This partnership steered the DNA demethylation
machinery to specific gene loci in cancer cells, thereby regulating gene expression [17].

2.4. Scaffold

In their function as scaffolds, lncRNAs can facilitate the formation of multi-protein
complexes, providing a structural platform for the assembly of these complexes. This
function aids in the organization and coordination of various cellular processes, including
signal transduction and the regulation of gene expression. For instance, the RNA-binding
NONO-PSF heterodimer and NEAT1 are both involved in enhancing the processing of
primary miRNAs (pri-miRNAs) in HeLa cells. They interact with each other and other RNA-
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binding proteins, facilitating the microprocessor’s access to pri-miRNAs. This suggests that
lncRNA may play a central role in regulating small noncoding RNAs in the nucleus [18].

2.5. Enhancer RNA

LncRNAs can function as enhancers, augmenting the transcription of nearby genes by
looping the DNA, bringing distant regions into close proximity for transcriptional activation
(Figure 1E). They can modulate transcription either in cis, regulating neighboring genes on
the same chromosome, or in trans, influencing genes on different chromosomes [19]. Miao
et al. identified the role of LEENE (a lncRNA that enhances eNOS expression) in enhancing
the expression of endothelial nitric oxide synthase (eNOS), a key factor in vascular function.
LEENE facilitated RNA Pol II’s binding to the eNOS promoter, positively modulating the
synthesis of eNOS mRNA and promoting endothelial function [20].

Beyond their known roles, lncRNAs possess a plethora of unexplored functions,
validating the perspective that they might perform a limitless array of tasks within a bio-
logical context. Not only are lncRNAs pivotal for cellular differentiation and development,
but they also influence an extensive range of physiological processes. These encompass
DNA damage response, immune system regulation, metabolic processes, and synapse
function [21–24]. The initial skepticism about their importance, due to their lack of protein-
coding potential, has been substantially overcome by a growing body of research. This
shift in perspective underlines not only the importance of understanding the full range of
lncRNA functions, but also their potential implications in health and disease.

2.6. MiRNA Sponge

One of the prominent functions of lncRNAs is their ability to act as miRNA sponges.
By binding to miRNAs, these lncRNAs effectively inhibit the miRNAs from associating
with their target mRNAs, thereby modulating post-transcriptional regulation (Figure 1F).

A classic example is the lncRNA HOTAIR, which has been reported to sponge miR-34a,
a tumor suppressor miRNA. By sequestering miR-34a, HOTAIR can promote oncogenic
pathways in certain cancer types, pointing to the significance of lncRNA–miRNA interac-
tions in disease progression [25–27]. Furthermore, lncRNA–miRNA interactions introduce
an added layer of post-transcriptional regulation complexity. These interactions not only
modulate individual gene expressions, but also impact broader cellular pathways and
processes. Such processes include cell proliferation, differentiation, and apoptosis, where
the balance between lncRNAs and miRNAs plays a crucial role [28–30].

3. Pivotal Role of lncRNA in Hepatocarcinogenesis

Due to the increasing demand for better diagnostic and therapeutic approaches, the
molecular underpinnings of HCC have become a focal point of research. As Ghafouri-Fard
et al. and Abbastabar et al. concluded in their reviews, multiple lncRNAs have been shown
to either promote or inhibit HCC progression, affecting processes such as cell proliferation,
migration, and invasion [31,32]. The following lncRNAs exemplify these characteristics in
the context of HCC.

3.1. HOTAIR (HOX Transcript Antisense RNA)

HOTAIR is an oncogenic lncRNA found to be upregulated in HCC. It originates from
the antisense strand of the Homeobox (HOX) gene cluster and plays a significant role in
cancer progression [33]. HOTAIR was reported to play a crucial role in HCC by regulating
cell growth, migration, invasion, and apoptosis. Its overexpression was often associated
with greater tumor size, metastasis, and poor prognosis [34–36].

Specifically, HOTAIR plays a key role through its interactions with Polycomb Repres-
sive Complex 2 (PRC2) and Lysine Specific Demethylase 1 (LSD1), which are crucial players
in gene silencing [37]. More specifically, HOTAIR acts as a scaffold, binding to EZH2, a
subunit of PRC2, thereby facilitating PRC2’s role in repressing gene transcription through
the trimethylation of histone H3 at lysine 27 (H3K27me3) [38]. At the same time, HOTAIR
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can bind to LSD1, which in cooperation with CoREST/REST forms a multi-protein complex
involved in gene silencing. This interaction allows HOTAIR to contribute to the silencing
of miRNA through its association with PRC2 and LSD1 [39]. Furthermore, HOTAIR is
implicated in the regulation of SUZ12, a key binding subunit of PRC2. Overexpression of
HOTAIR accelerates the proteasome degradation of SUZ12 and enhances the ubiquitination
of SUZ12, facilitated by PLK1. Another interaction of HOTAIR is with the DEAD-box
helicase protein 5 (DDX5). This interaction stabilizes SUZ12, reinforcing SUZ12- and PRC2-
mediated gene silencing. DDX5 replaces the original Mex-3 RNA binding family member B
(Mex3b) linked to HOTAIR, thereby stabilizing the HOTAIR–PRC2 interaction [40]. In HCC
patients, overexpression of HOTAIR and PLK1, more than twice the normal levels, was
associated with a significant increase in the expression of PRC2 target genes and EPCAM,
underscoring the impact of HOTAIR on the epigenetic regulation in HCC [39].

Moreover, HOTAIR also functions as a molecular sponge, sequestering miRNAs like
miR-218, which suppresses tumorigenesis. By sponging miRNAs, HOTAIR prevented their
anti-cancer effects, leading to enhanced cell proliferation and metastasis [34].

3.2. NEAT1 (Nuclear Enriched Abundant Transcript 1)

NEAT1 is a central component of paraspeckles, specialized sub-nuclear bodies, and
plays a pivotal role in their formation and integrity [41]. Over the years, research has
shown that NEAT1 is aberrantly upregulated in a variety of cancers. This heightened
expression often correlates with a poorer prognosis for patients, making it a potential
biomarker for disease progression [42–44]. In the context of liver diseases, NEAT1’s role is
multifaceted. It has been implicated in accelerating the progression of non-alcoholic fatty
liver disease (NAFLD), liver fibrosis, and HCC. However, in conditions characterized by
an acute deterioration of liver function in patients with pre-existing chronic liver disease,
NEAT1 assumes a protective role by mitigating the inflammatory response [45].

Additional studies in HCC confirmed that NEAT1 is typically overexpressed, pro-
moting cell proliferation, migration, and invasion [46]. Mechanistically, NEAT1 forms a
complex with U2AF65, which in turn boosts the expression of hnRNP A2, a known driver
in HCC [47]. Another layer of regulation involves HIF-2α, which enhances NEAT1 expres-
sion, subsequently influencing the epithelial-mesenchymal transition, a critical process in
cancer metastasis [48]. A significant aspect of NEAT1’s function is its ability to act as a
molecular sponge for a range of miRNAs. By sequestering these miRNAs, NEAT1 restores
the expression of specific genes that these miRNAs would otherwise inhibit [49–51].

Apart from its role as a miRNA sponge, NEAT1 also plays a pivotal role in ferroptosis,
a unique form of cell death driven by iron-dependent lipid peroxidation, crucial for tumor
development and drug resistance [52]. Recent studies have shown that two ferroptosis
inducers, erastin and RSL3, elevate NEAT1 expression by enhancing p53’s binding to the
NEAT1 promoter. Once upregulated, NEAT1 boosts MIOX expression by competitively
binding to miR-362-3p. This leads to an increase in ROS production and a decrease in
intracellular NADPH and GSH levels, amplifying the effects of erastin and RSL3. Notably,
overexpressing NEAT1 enhances the anti-tumor effects by intensifying ferroptosis in vitro
and in vivo [51].

Additionally, NEAT1’s role extends to influencing drug resistance in HCC. It had
been shown to synergistically enhance cisplatin resistance in certain liver cancer cells [53].
Furthermore, its involvement in the resistance to sorafenib, a primary therapeutic agent
for HCC, has been shown. To be specific, inhibition of NEAT1 amplifies the efficacy of
sorafenib, resulting in increased drug-induced cell death and notably smaller tumors in
nude mice than with just sorafenib treatment [54].

3.3. HULC (Highly Upregulated in Liver Cancer)

In liver cancer, an increase in the lncRNA HULC, driven by the protein CREB, signifi-
cantly influences cellular mechanisms by altering YB-1 phosphorylation patterns, which
is key in hepatocarcinogenesis [55,56]. HULC also blocks the programmed cell death, or
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apoptosis, in these cancer cells, specifically when triggered by miR-9 [57]. Another protein,
Hepatitis B virus X (HBX), also induces increased levels of HULC and reduces p18, which
in turn helps HCC to grow [58]. Given these roles, the overexpression of HULC suggests
its potential as a noninvasive biomarker for diagnosis and prognosis [59]. This previous
research highlighted the role of HULC in the growth and progression of HCC cells.

3.4. MALAT1 (Metastasis Associated Lung Adenocarcinoma Transcript 1)

MALAT1 is a recognized oncogenic lncRNA that plays a crucial role in the progression
of HCC. This lncRNA functions through various pathways, particularly serving as a molec-
ular sponge, and has been observed to be overexpressed in HCC [60]. To be specific, the
function of MALAT1 is its ability to bind and sequester various miRNAs, thereby influenc-
ing their target function. For instance, MALAT1 reduces the expression of miR-204, leading
to an increase in SIRT1 levels and the facilitation of the epithelial–mesenchymal transition
(EMT) [61]. Additionally, MALAT1 sequesters miR-143-3p, leading to the upregulation
of FGF1- and EMT-promoting proteins [62]. Furthermore, MALAT1’s interaction with
miR-200a leads to increased levels of proteins involved in EMT and cell proliferation [63].
Moreover, MALAT1’s interaction with miRNAs such as miR-124-3p and miR-195 results in
an upregulation of cell proliferation and invasion facilitating proteins, further highlighting
its role in HCC progression [64,65]. Lastly, through downregulation of miR-22, MALAT1
promotes EMT and recruits EZH2 to suppress E-cadherin and miR-22 expression [66].

Beyond the aforementioned lncRNAs, a vast number of additional lncRNAs have
been recently discovered and their functions are deeply intertwined with the onset and
progression of HCC (Table 1). This has solidified their position as a distinct subject of study
within the field of oncology.

Table 1. LncRNAs with differential expression profiles and their roles in hepatocarcinogenesis.

Expression lncRNA Known Function Reference

Upregulated

HULC EMT, metastasis, apoptosis [56,67,68]

MALAT1 EMT, metastasis, apoptosis, cell-cycle arrest [61,65]

HOTAIR EMT, metastasis, apoptosis, cell-cycle arrest [34–36]

DLEU2 Vascular invasion, lymphatic metastasis [69]

SNHG1 EMT, cell-cycle regulation, metastasis, apoptosis [70]

NEAT1 Ferroptosis, metastasis, proliferation, invasion, drug resistance [47,51,53,54,71]

TUG1 Metastasis, apoptosis [72]

CRNDE Proliferation, migration, invasion [73]

KDM4A-AS1 EMT, metastasis [74]

UCA1 EMT, cell-cycle regulation, apoptosis [75]

ANRIL Metastasis, apoptosis [76,77]

CASC15 EMT, metastasis, suppression of apoptosis [78]

ZFAS1 Metastasis [79]

CARLo-5 EMT [80]

LOC90784 Apoptosis, cell-cycle arrest [81]

H19 EMT, metastasis, suppression of apoptosis [82–84]

PCAT-14 cell-cycle arrest [85]

LINC02551 EMT, metastasis [86]

LINC01116 EMT, cell-cycle regulation, metastasis, immune-cell infiltration [87]

CCAT2 Proliferation, migration, invasion [88]

PVT1 Microvascular invasion, proliferation [89,90]
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Table 1. Cont.

Expression lncRNA Known Function Reference

Downregulated

DGCR5 Proliferation, migration, invasion [91]

MEG3 Inhibition of metastasis, angioinvasion and proliferation by
cell-cycle regulation [92–94]

FENDRR Apoptosis, Treg-mediated immune escape [95,96]

GAS5 Suppression of proliferation, drug resistance and M2
macrophage polarization [97,98]

RAB11B-AS1 Apoptosis [99]

4. LncRNAs as Key Modulators of the HCC Tumor Microenvironment

The evolving landscape of cancer biology has recognized the pivotal role of lncRNAs in
modulating the tumor microenvironment (TME). Park et al. reviewed that these lncRNAs,
by orchestrating intricate interactions within the TME, contribute to various aspects of
cancer progression including uncontrolled growth, metastasis, and immune evasion [100].

The immune landscape within HCC is a complex interplay of multiple cell types,
influenced and orchestrated by lncRNAs. Jiang et al. demonstrated that the polarization of
macrophages, a crucial cellular component in the environment of HCC, is indicative of this
interplay [101].

To be specific, the overexpression of MALAT1 in HCC cells promotes angiogenesis and
fosters an immunosuppressive environment. This occurs through MALAT1’s interaction
with miR-140, inhibiting miR-140’s activity, and consequently increasing VEGF-A produc-
tion which aids HCC progression by promoting angiogenesis and favoring the polarization
of macrophages towards the M2 immunosuppressive subset [102].

Beyond macrophages, lncRNAs also play significant roles in modulating T-cell func-
tions within HCC, impacting the disease’s progression and immune escape mechanisms.
For example, lncRNA epidermal growth factor receptor (lnc-EGFR) is highly expressed in
regulatory T cells (Tregs) in HCC. Lnc-EGFR interacts with EGFR, inhibits its ubiquitination
by c-CBL, and amplifies downstream signaling via AP-1/NFAT1, promoting Treg-cell
differentiation and immune evasion [103].

On the contrary, the lncRNA fetal-lethal non-coding developmental regulatory RNA
(FENDRR) acts as a sponge for miR-423-5p, impeding Tregs’ immune-suppressive activ-
ities. Overexpressed FENDRR competitively binds miR-423-5p and upregulates growth
arrest and DNA-damage-inducible beta protein (GADD45B), which inversely correlate
with Treg-cell number, thereby reducing immunosuppressive cytokines TGF-β and IL-10
and inducing tumor-cell apoptosis [96]. Moreover, lncRNAs Tims and lncNNT-AS1 are
associated with reduced infiltration of tumor CD4 and CD8 T cells, influencing clinical
outcomes and responses to immunotherapies [104].

Another lncRNA, Myocardial Infarction Associated Transcript (MIAT), shows elevated
expression in various cells implicated in the disease, including tumor cells themselves:
FoxP3+ Tregs, PD-1+ CD8+ T cells, and GZMK+ CD8+ T cells. Furthermore, the upregu-
lation of MIAT is associated with how well patients respond to sorafenib. This lncRNA’s
expression also has a significant correlation with the presence of PD-L1, a protein involved
in immune evasion by cancer cells [105].

5. Implications of m6A Modification on lncRNA in HCC

N6-methyladenosine (m6A) is the most prevalent internal modification in eukaryotic
RNA. It plays critical roles in various biological processes, including mRNA splicing, ex-
port, stability, and translation efficiency [106–108]. The addition of the m6A modification is
catalyzed by an enzyme complex known as the m6A methyltransferase complex, includ-
ing METTL3, METTL14, KIAA1429, RBM15, and WTAP [109–112]. On the other hand,
demethylases, such as FTO and ALKBH5, remove m6A modifications [99,113,114]. Proteins
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that recognize m6A modifications, often referred to as reader proteins, such as YTH domain-
containing proteins, recognize these modifications and influence the fate of m6A-modified
RNAs [115–117]. Figure 2 depicts the mode of action for the m6A modification mechanism
of this protein complex.
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Lately, many studies have demonstrated the intricate roles of m6A modification on
lncRNAs in HCC progression. One such example is LINC00958, a lncRNA found to be
overexpressed in HCC. LINC00958 acted as a molecular sponge for miR-3619-5p, leading
to the upregulation of hepatoma-derived growth factor (HDGF), thereby promoting HCC
progression. Its overexpression was facilitated by the m6A methyltransferase METTL3,
suggesting a critical interplay between m6A modification and lncRNA functionality [118].

An m6A-related lncRNA prognostic signature involving LINC02362, SNHG20, and
SNHG6 was identified as a powerful predictor of patient survival, reflecting the close
connection between the m6A modification landscape, lncRNA dynamics, and patient
outcomes [119]. Additionally, MEG3 demonstrated tumor-suppressive roles through the
miR-544b/BTG2 signaling pathway upon upregulation by m6A modification [94].

In a related study, ALKBH5-mediated m6A demethylation downregulated LINC02551,
a crucial lncRNA for HCC growth and metastasis, indicating the importance of the balance
between methylation and demethylation processes in the m6A–lncRNA axis [86]. Further
investigations revealed the promoting role of METTL16 in HCC progression through the
downregulation of the tumor suppressor RAB11B-AS1 via an m6A–YTHDF2-dependent
mechanism [99].

The role of m6A modification was also underscored in immune evasion, with
lipopolysaccharide (LPS) found to increase PD-L1 expression through the m6A modi-
fication of MIR155HG, a process essential for HCC immune evasion [120]. The lncRNA
ARHGAP5-AS1, which exhibited elevated m6A levels on its transcript, is overexpressed in
HCC. It was modulated by METTL14, which functions as its m6A writer, and by IGF2BP2,
which acts as the m6A reader. Interestingly, the oncogenic ARHGAP5-AS1 diminished the
interactions between CSDE1 and TRIM28, effectively preventing the proteasomal degra-
dation of CSDE1. As a consequence of this interaction, CSDE1 was enabled to coordinate
oncogenic RNA regulons, which in turn activate the ERK pathway, a critical player in the
prognosis of HCC [121].
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Lastly, the lncRNA miR4458HG was discovered to influence HCC-cell proliferation,
activate the glycolysis pathway, and promote tumor-associated macrophages’ polarization,
highlighting its oncogenic role in HCC patients with high glucose metabolisms [122]. The
lncRNAs regulated by m6A in HCC are summarized in Table 2.

Table 2. m6A modified lncRNAs in HCC.

Expression lncRNA m6A Binding Partner Reference

Upregulated

HULC IGF2BP1 [123]

LINC00958 METTL3 [118]

LINC02362

- [119]SNHG20

SNHG6

MIR4458HG IGF2BP2 [122]

LINC02551 ALKBH5 [86]

MIR155HG METTL14 [120]

SLC7A11-AS1 METTL3 [124]

ARHGAP5-AS1 METTL14
IGF2BP2 [121]

Downregulated

RAB11B-AS1 METTL16 [99]

MEG3 METTL3 [94]

AC115619 WTAP [125]

In conclusion, these findings underscore the multi-faceted influence of m6A modifi-
cation in the regulation of lncRNA functions, thereby controlling the progression of HCC.
The m6A–lncRNA axis provides a connection between RNA modification and the complex
networks of non-coding RNAs, potentially offering some insights into HCC pathogenesis,
suggesting possibilities for new therapeutic approaches.

6. LncRNAs as Serum Biomarkers in Liver Cancer

Beylerli et al. highlighted that lncRNAs are secreted by tumor cells into human bio-
logical fluids, forming stable circulating lncRNAs resistant to RNA degradation. Aberrant
expression of these lncRNAs has been observed in cancer patients [126]. Thus, for HCC
diagnosis and prognosis, lncRNAs are increasingly being recognized as a potent alternative
to traditional biomarkers such as alpha-fetoprotein (AFP). The efficacy of AFP as an early
detector for HCC has been debated due to concerns regarding its sensitivity and speci-
ficity [127–132]. LncRNAs offer enhanced sensitivity and specificity, potentially addressing
the limitations posed by traditional markers such as AFP [133–135]. Consequently, there is
a growing demand for new diagnostic markers that could replace AFP, and lncRNAs could
serve as one such alternative. Therefore, the expression levels of these lncRNAs could serve
as key indicators of disease progression and prognosis.

Notably, lncRNAs such as MVIH, X91348, and HOTTIP have shown potential as
prognostic markers in HCC [136–138]. The high expression of MVIH, associated with
microvascular invasion, is a known independent risk factor for recurrence-free survival
and overall survival in HCC patients [136]. Similarly, the low expression of lncRNA
X91348 in HCC patients relative to healthy individuals was associated with increased
overall survival [137]. Moreover, elevated HOTTIP levels were linked to increased tumor
recurrence and decreased survival rates in HCC patients following liver transplantation.
Conversely, a decrease in HOTTIP expression correlated with more favorable patient
outcomes. Hence, HOTTIP could serve as a significant prognostic marker and potential
therapeutic target for HCC [138].
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With the progression towards minimally invasive and non-invasive diagnostic tech-
niques, circulating lncRNAs in serum are being extensively studied. For instance, high
serum levels of lncRNA-ATB were associated with overall survival, progression-free sur-
vival, tumor size, TNM stage, C-reactive protein levels, T stage, and portal vein thrombosis,
highlighting their potential as serum biomarkers in HCC patients [139].

Exosomal lncRNAs present multiple benefits when considered as biomarkers. Pro-
tected from degradation by RNases within exosomes, these lncRNAs remained stable
and detectable in various body fluids, making them a potential non-invasive diagnostic
tool [135,140–144]. Moreover, given the tissue- or disease-specific nature of many lncR-
NAs, the detection of specific exosomal lncRNAs might indicate distinct cancer types. For
instance, a signature composed of two lncRNAs, PVT1 and uc002mbe.2, demonstrated
satisfactory sensitivity and specificity values for distinguishing liver cancer patients from
healthy individuals, thus underscoring their potential as specific biomarkers for HCC [145].
Moreover, the lncRNA LINC00853 not only possessed potential diagnostic value, but it
also showed prognostic relevance in HCC. Importantly, increased expression of LINC00853
is associated with lower survival rates in patients with stage II HCC according to the
modified Union for International Cancer Control (mUICC II). This underlines the poten-
tial of LINC00853 as a liver-cancer-specific marker, providing an avenue for both disease
identification and assessment of its progression [134].

Furthermore, several studies identified lncRNAs, such as UCA1 and WRAP53, as
promising biomarkers in HCC diagnosis when used in conjunction with AFP [146,147]. An-
other group also identified LINC00152, RP11-160H22.5, and XLOC014172 as new biomark-
ers for HCC. These lncRNAs, in combination with the conventional marker AFP, were
found to improve the diagnostic accuracy for HCC, indicating their potential for enhancing
HCC diagnosis [148].

Within the context of chemotherapy resistance, certain lncRNAs, such as CAHM, were
identified as key predictive markers. Utilizing machine learning algorithms, CAHM was
characterized as a central lncRNA, with elevated expression in sorafenib-resistant cell
lines, highlighting its prospective role as a biomarker for chemotherapy resistance [149].
The names and expression tendencies of lncRNAs with diagnostic potential for HCC are
summarized in Table 3.

Table 3. Potential lncRNAs as diagnostic biomarkers for HCC detection.

Expression lncRNA Blood Detection Reference

Upregulated

MVIH Yes [136]

HOTTIP Yes [135,138]

ATB Yes [139]

DLEU2 Yes

[135]MALAT1 Yes

SNHG1 Yes

PVT1 Yes
[145]

uc002mbe.2 Yes

LINC00853 Yes [134]

UCA1 Yes [146,147]

WRAP53 Yes [147]

LINC00152 Yes

[148]RP11-160H22.5 Yes

XLOC014172 Yes

DANCR - [150]
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Table 3. Cont.

Expression lncRNA Blood Detection Reference

LINC00978 Yes [151]

LncDQ Yes [152]

SPRY4-IT1 - [153]

UBE2CP3 Yes [133]

LINC01225 Yes [154]

H19 Yes [155]

uc003wbd Yes [156]

CAHM - [149]

FAM72D-3 Yes
[157]

EPC1-4 Yes

Downregulated

JPX -
[158]

XIST -

DGCR5 - [159]

X91348 Yes [137]

In summary, lncRNAs have emerged as promising biomarkers for HCC, with their
roles in diagnostic and prognostic precision medicine becoming evident. Nonetheless, the
literature lacks comparative studies between established biomarkers like PIVKA-II and new
lncRNA biomarkers [160]. To validate lncRNAs’ clinical significance, extensive multicentric
studies are essential. Additionally, standardizing methodologies for detecting circulating
lncRNAs is vital to ensure consistent results. Despite challenges, exploring lncRNAs as
HCC biomarkers promises to enhance diagnosis, prognosis, and targeted treatments for
this malignancy.

7. Summary and Future Perspectives

The discovery and subsequent study of lncRNAs significantly reshaped our under-
standing of genomic regulation. These non-coding transcripts, although initially dismissed
as incidental transcriptional byproducts, have since been revealed as vital players in gene
expression regulation and various biological processes [161,162]. This is particularly true
for HCC, where lncRNA dysregulation is closely linked to disease pathogenesis [31].

Fortunately, the environment and numerous techniques for lncRNA research are
steadily improving, and there is a wealth of web-based tools and publicly available data to
facilitate the study of lncRNAs. These resources have expanded our ability to explore the
multifaceted roles of lncRNAs and the mechanisms underlying their regulation (Table 4).

Table 4. Web-based tools for comprehensive lncRNA research and analysis.

Name Website Description Reference

RNACentral https://rnacentral.org (accessed on 10
September 2023)

A public platform offering access to a wide
collection of non-coding RNA sequences
from various organisms and RNA types

[163]

LncBase https://diana.e-ce.uth.gr/lncbasev3
(accessed on 10 September 2023)

A database cataloging 500,000 verified
miRNA–lncRNA interactions across

243 cell types
[164]

RNAfold
http://rna.tbi.univie.ac.at/cgi-bin/

RNAWebSuite/RNAfold.cgi (accessed
on 10 September 2023)

A tool used for predicting the secondary
structure of RNA sequences [165]

https://rnacentral.org
https://diana.e-ce.uth.gr/lncbasev3
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi
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Table 4. Cont.

Name Website Description Reference

LncSEA
http:

//bio.liclab.net/LncSEA/index.php
(accessed on 10 September 2023)

A platform for lncRNA-related sets and
enrichment analysis [166]

LncExpDB https://ngdc.cncb.ac.cn/lncexpdb
(accessed on 10 September 2023) Expression database of human lncRNAs [167]

lncRNAKB https://bio.tools/lncrnakb (accessed
on 10 September 2023)

A knowledgebase of tissue-specific
functional annotation and trait association

of lncRNA
[168]

LNCipedia http://www.lncipedia.org (accessed on
10 September 2023)

A database for annotated human lncRNA
transcript sequences and structures [169]

dbEssLnc https://esslnc.pufengdu.org (accessed
on 10 September 2023)

A manually curated database of human and
mouse essential lncRNA genes [170]

LncTar http://www.cuilab.cn/lnctar (accessed
on 10 September 2023)

A tool for predicting the RNA targets
of lncRNAs. [171]

TANRIC
https://bioinformatics.mdanderson.

org/public-software/tanric (accessed
on 10 September 2023)

TANRIC webapp provides analysis of
lncRNA in cancer, highlighting potential

therapeutic targets and biomarkers
[172]

LncBook https://ngdc.cncb.ac.cn/lncbook
(accessed on 10 September 2023)

A comprehensive database of human
lncRNAs, offering annotations for

understanding their roles in diseases and
biological contexts.

[173]

lncATLAS https://lncatlas.crg.eu (accessed on 10
September 2023)

A database showing subcellular locations of
GENCODE-annotated lncRNAs, using

RCI values
[174]

RNAInter http://www.rnainter.org (accessed on
10 September 2023)

A database with a scoring system to rate the
confidence of RNA-associated interactions

based on experimental evidence and
tissue/cell types

[175]

ENCORI https://rnasysu.com/encori (accessed
on 10 September 2023)

A platform for studying RNA interactions,
integrating diverse data and enabling

pan-cancer analysis
[176]

Such advancements in bioinformatics technology have further facilitated our ability to
uncover the roles of lncRNAs in HCC, from influencing disease pathogenesis to acting as
potential diagnostic markers. One such example is the exploration of upstream regulators
like the m6A modification, unveiling lncRNA regulation and adding complexity to our
understanding of their role in HCC. While current research predominantly revolves around
m6A and its relationship with lncRNA, there are various RNA modifications similar to
m6A, such as 5-methylcytosine (m5C), N7-methylguanosine (m7G), and 3-methylcytidine
(m3C) [177]. The roles and biological functions of these diverse RNA modifications are
not yet well-understood. Given this, they present promising research topics in relation to
cancer etiology.

In future studies, research on lncRNAs holds promising potential to open new avenues
for therapeutic intervention. Despite initial uncertainties and controversies, the role of
lncRNAs in cellular function regulation and their implications in HCC have underscored
their importance in biomedical research. Subsequent research endeavors should persist in
elucidating the complexities of lncRNA function and dysregulation, deepening our com-
prehension of HCC, and establishing the foundation for novel diagnostic and therapeutic
approaches. The challenge will be to translate this expanding knowledge into clinical
applications, advancing lncRNA research from the bench to the bedside.

http://bio.liclab.net/LncSEA/index.php
http://bio.liclab.net/LncSEA/index.php
https://ngdc.cncb.ac.cn/lncexpdb
https://bio.tools/lncrnakb
http://www.lncipedia.org
https://esslnc.pufengdu.org
http://www.cuilab.cn/lnctar
https://bioinformatics.mdanderson.org/public-software/tanric
https://bioinformatics.mdanderson.org/public-software/tanric
https://ngdc.cncb.ac.cn/lncbook
https://lncatlas.crg.eu
http://www.rnainter.org
https://rnasysu.com/encori
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