Original Contribution

Superoxide anion and proteasomal dysfunction contribute to curcumin-induced paraptosis of malignant breast cancer cells

Mi Jin Yoon,a Eun Hee Kim,a Jun Hee Lim,b Taeg Kyu Kwon,b Kyeong Sook Choi,a,⁎

a Department of Molecular Science & Technology, Institute for Medical Sciences, Ajou University School of Medicine, Suwon, 443-749, Korea
b Department of Immunology, Keimyung University School of Medicine, Taegu, 700-712, Korea

Abstract

Curcumin is considered a pharmacologically safe agent that may be useful in cancer chemoprevention and therapy. Here, we show for the first time that curcumin effectively induces paraptosis in malignant breast cancer cells, including MDA-MB-435S, MDA-MB-231, and Hs578T cells, by promoting vacuolation that results from swelling and fusion of mitochondria and/or the endoplasmic reticulum (ER). Inhibition of protein synthesis by cycloheximide blocked curcumin-induced vacuolation and subsequent cell death, indicating that protein synthesis is required for this process. The levels of AIP-1/Alix protein, a known inhibitor protein of paraptosis, were progressively downregulated in curcumin-treated malignant breast cancer cells, and AIP-1/Alix overexpression attenuated curcumin-induced death in these cells. ERK2 and JNK activation were positively associated with curcumin-induced cell death. Mitochondrial superoxide was shown to act as a critical early signal in curcumin-induced paraptosis, whereas proteasomal dysfunction was mainly responsible for the paraptotic changes associated with ER dilation. Notably, curcumin-induced paraptotic events were not observed in normal breast cells, including mammary epithelial cells and MCF-10A cells. Taken together, our findings on curcumin-induced paraptosis may provide novel insights into the mechanisms underlying the selective anti-cancer effects of curcumin against malignant cancer cells.

Keywords:
Curcumin
Paraptosis
Superoxide anion
Proteasome
Breast cancer cells
Free radicals

Curcumin (diferuloylmethane), a major active component of turmeric (Curcuma longa), has long been used as a popular dietary spice and herbal medicine in the Orient[1]. Curcumin acts on a variety of molecular targets associated with cancer development, and preclinical data have shown that it may inhibit tumor formation in animal models of carcinogenesis[2]. Clinical trials have revealed that curcumin may produce antitumor effects in individuals with precancerous lesions or those who are at a high risk for developing cancer[3]. Furthermore, curcumin has demonstrated selective killing of various cancer cell types, while sparing normal cells[3–5]. Such observations suggest that curcumin is a pharmacologically safe agent that may be used not only in cancer chemoprevention, but also in cancer therapy, either as a primary therapeutic agent or as an adjuvant to traditional chemotherapy. Although much of the research into the cancer-killing effects of curcumin has focused on its ability to induce apoptosis[2,3,6,7], curcumin has also been reported to induce nonapoptotic cell death through mitotic catastrophe[8,9] or autophagic cell death[10] in several types of cancer cells.

Recently, a new type of nonapoptotic cell death, termed paraptosis (from para, meaning next to or related to, and apoptosis)[11], has been reported to be induced by insulin-like growth factor 1 receptor, epidermal growth factor, and TAJ/TROY, a member of the tumor necrosis factor receptor superfamily[12–14]. Paraptosis is characterized by a process of vacuolation that begins with physical enlargement of mitochondria and the endoplasmic reticulum (ER)[11,14,15]. This form of cell death does not involve the apoptotic characteristics of pyknosis, DNA fragmentation, or caspase activation[11]. Paraptosis is known to require new protein synthesis[11], and recent reports have identified AIP-1/Alix as an inhibitor of paraptosis[12,16]. However, the mechanisms underlying paraptosis, in particular the signals responsible for triggering mitochondrial and ER dilation, have not yet been fully determined.

Here we show that curcumin is preferentially cytotoxic to malignant breast cancer cells compared with normal breast cells and demonstrate that cell death is due to induction of paraptosis, not apoptosis or autophagy. We further show that superoxide anion and proteasomal dysfunction contribute to the paraptotic changes seen in mitochondria and the ER.

Materials and methods

Chemicals and antibodies

We used the following chemicals: 3-methyladenine (3-MA), bafilomycin A1, cycloheximide (CHX), lactacystin, MG132, N-acetylcycteine (NAC), reduced glutathione (GSH), polyethylene glycol (PEG)–catalase (Sigma Chemical Corp.); MitoTracker red, MitoTracker green, ER Tracker red, calcein acetoxyethyl ester (calcein-AM), ethidium homodimer (EthD-1), 5,6-carboxy-2′,7′-dichlorofluorescein.
diacetate (H₂DCF-DA), MitoSOX red (Molecular Probes); z-VAD-fmk (R&D Systems); MnTBAP (Mn(III) tetrakis(benzonic acid) porphyrin), SB203580, U0126, SP600125 (Calbiochem); N-acetylleucyleucylnorleucinal (ALLN) (BioMol Research Laboratories); and recombinant TRAIL (KOMA). We used antibodies against β-actin, Flag-M2 (Sigma); caspase-3, caspase-4, caspase-7, XIAP, KDEL, survivin (Stressgen); Bcl-2, Bcl-xl, ubiquitin, ATG6, CHOP/GADD153 (Santa Cruz); polyclonal anti-ribosome polypeptide (PARP; Epitomics, Inc.); ATG7 (Prosci, Inc.); phospho-ERK1/2, ERK1/2, phospho-p38, p38, phospho-JNK, JNK, phospho-eIF2α, eIF2α, AIP-1/Alix (Cell Signaling); hemagglutinin (HA; Covance); and rabbit IgG HRP and mouse IgG HRP (Zymed).

Cell culture and curcumin treatment

MDA-MB-231, MDA-MB-435S, and Hs578T were from the American Type Culture Collection (ATCC) and cultured in DMEM supplemented with 10% fetal bovine serum and antibiotics (Life Technologies). MCF-10A (from the ATCC) was cultured in serum-free mammary epithelial growth medium (MEGM; Clonetics Corp.) supplemented with 100 ng/ml cholera toxin. Normal human mammary epithelial cells (from Clonetics Corp.) were maintained in MEGM supplemented with bovine pituitary extract, insulin, human epidermal growth factor, hydrocortisone, and antibiotics. Cells at culture passage numbers less than 5 were used in this study. Curcumin (>94% purity; Sigma) was dissolved in dimethyl sulfoxide at a concentration of 40 mM and stored in a dark-colored bottle at −20°C. This stock solution was diluted to the required concentration when needed.

Measurement of cellular viability

Cell viability was assessed by double labeling of cells with 2 μM calcine-AM and 4 μM EthD-1. The calcine-positive live cells and EthD-1-positive dead cells were visualized using a fluorescence microscope (Axiovert 200M; Zeiss) and counted.

Western blotting

Cells were washed in PBS and lysed in boiling sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) sample buffer (62.5 mM Tris (pH 6.8), 1% SDS, 10% glycerol, and 5% β-mercaptoethanol). The lysates were boiled for 5 min, separated by SDS–PAGE, and transferred to an Immobilon membrane (Millipore). After nonspecific binding sites were blocked for 1 h using 5% skim milk, the membranes were incubated for 2 h with specific antibodies. Membranes were then washed three times with Tris-Buffered Saline Tween-20 (TBST) and incubated further for 1 h with horseradish peroxidase-conjugated anti-rabbit, -mouse, or -goat antibody. Visualization of protein bands was accomplished using ECL (Amersham Life Science). The respective protein band intensity was quantified by densitometric analysis using the NIH ImageJ program. Representative results from at least three independent experiments are shown.

Establishment of stable cell lines expressing green fluorescent protein (GFP)-LC3 and fluorescing specifically in mitochondria or endoplasmic reticulum

MDA-MB-435S cells were transfected with the plasmid encoding GFP-LC3 [17], the pEYFP-Mito vector, or the pEYFP-ER vector (Clontech Laboratories), and the respective stable cell lines were selected with medium containing 500 μg/ml G418.

Measurement of reactive oxygen species (ROS) and mitochondrial superoxide production

To measure ROS or mitochondrial superoxide production, cells were loaded with 10 μM H₂DCF-DA for 30 min in the dark or loaded with 2.5 μM MitoSOX red for 20 min in the dark. After being washed with PBS or HBSS with Ca²⁺ and Mg²⁺, the cells were further processed for flow cytometry.

Establishment of stable breast cancer cells overexpressing manganese superoxide (MnSOD) or catalase

From the plasmids encoding HA-tagged MnSOD or catalase [18], the respective antioxidant cDNAs were PCR amplified and subcloned into the MFG retroviral vector by replacing the GFP sequence of MFG. GFP.IRES.puro [19]. The respective retroviral plasmids were introduced into the 293gpG packaging cell line by transfection with Lipofectamine. After 72 h, the supernatants were harvested and used for retroviral infection. Control cells were transfected with MFG alone. Stable cell lines overexpressing MnSOD or catalase were selected with changes of fresh medium containing 4 μg/ml puromycin. The expression of the respective antioxidant proteins in the stable cell lines was analyzed by Western blotting using anti-HA antibody.

Small interfering RNAs

The small interfering RNA (siRNA) duplexes used in this study were purchased from Invitrogen and have the following sequences: ATG6 (NCBI Accession No. NM-003799), CAGUUUGGCACAAUCAUUAUCCA; ATG7 (NM-006395), CAGAGGACUGACGCUUCUCUA; ERK2 (HUMERK2A), AAAGAGUGAUGAAGACTT; and ERK1 (Invitrogen Cat. No. 12935-200), UUAAGAGACUCACGCAUG. After the pairs of siRNA oligos were annealed, cells in 24-well plates were transfected with 40 nM siRNA oligonucleotides using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s instructions.

Transmission electron microscopy

Cells were prefixed in Karnovsky’s solution (1% paraformaldehyde, 2% glutaraldehyde, 0.1 M cacodylate buffer (pH 7.4)) for 2 h and washed with cacodylate buffer. Postfixing was carried out in 1% osmium tetroxide and 1.5% potassium ferrocyanide for 1 h. After dehydration with 50 to 100% alcohol, the cells were embedded in Poly/Bed 812 resin (Pelco) and polymerized and observed under an electron microscope (EM 902A; Zeiss).

Construction of the expression vector encoding AIP-1/Alix

The human AIP-1/Alix cDNA was amplified by PCR using primers designed to incorporate a 5’ Flag epitope. The PCR product was subcloned into the pcDNA3 expression vector (Invitrogen). The fidelity of the PCR and cloning procedures was verified by nucleotide sequencing.

Statistical analysis

All data are presented as means ± standard deviation from at least three separate experiments. The statistical significance was assessed using ANOVA with Bonferroni or repeated-measures ANOVA followed by Greenhouse–Geisser adjustment. P values less than 0.05 were considered statistically significant.

Results

The selective cytotoxic effects of curcumin on malignant breast cancer cells are not associated with apoptosis or autophagy

An examination of the effects of curcumin on the viability of various cancer cells (MDA-MB-231, MDA-MB-435S, and Hs578T) and normal cells of breast origin (human mammary epithelial cells

(HMEC) and MCF-10A) revealed that curcumin was much more cytotoxic to malignant breast cancer cells than normal cells (Fig. 1A). We next investigated whether curcumin-induced cell death in malignant breast cancer cells was associated with apoptosis. Both TRAIL (100 ng/ml), a representative apoptotic inducer [20], and curcumin (40 μM) induced similar levels of cytotoxicity in MDA-MB-435S cells. TRAIL also induced the proteolytic processing of caspase-3 and PARP, a substrate of caspase-3 [21]; and TRAIL-induced cell death, as well as the processing of caspase-3 and PARP, was effectively blocked by the pancaspase inhibitor z-VAD-fmk (Figs. 1B and C). By contrast, curcumin-induced cell death was not inhibited by z-VAD-fmk, and curcumin did not induce the processing of caspase-3 or PARP.

Fig. 1. Curcumin induces nonapoptotic cell death in malignant breast cancer cells. (A) Cells were treated with the indicated concentrations of curcumin for 36 h and then viability was assessed using calcein-AM and EthD-1. *P<0.001 vs control. (B) MDA-MB-435S cells were untreated or pretreated with 25 μM z-VAD-fmk and further treated with 40 μM curcumin or 100 ng/ml TRAIL for the indicated times. Cellular viability was assessed using calcein-AM and EthD-1. *P<0.001 vs 0 h. (C) Western blot of caspase-3, PARP, and β-actin. (D) MDA-MB-435S cells were transfected with empty vector (control), Flag-tagged Bcl-2, Bcl-xL, survivin, or XIAP and their overexpression was confirmed by Western blot using anti-Flag antibody or the respective antibodies. Transfected cells were treated with 40 μM curcumin or 100 ng/ml TRAIL for the indicated times. Cellular viability was assessed using calcein-AM and EthD-1. *P<0.001 vs control.
Curcumin induces paraptosis accompanied by swelling and fusion of mitochondria or ER in malignant breast cancer cells.

Next, we investigated whether the observed curcumin-induced vacuoles originated from mitochondria or the ER, using MDA-MB-435S sublines transfected with the pEYFP-Mito plasmid, to label mitochondria (YFP-Mito cells), or the pEYFP-ER plasmid to label the ER (YFP-ER cells). As shown in Fig. 3A, mitochondria in untreated YFP-Mito cells exhibited an elongated morphology, and the ER in untreated YFP-ER cells appeared as a reticulate structure. After curcumin treatment for 8 h, numerous vacuoles were clearly discernible by phase-contrast microscopy. Mitochondrial fluorescence in YFP-Mito cells primarily colocalized with vacuoles near the nucleus of a given cell, and ER fluorescence in YFP-ER cells mainly colocalized with vacuoles scattered at the cellular periphery. These observations indicate that curcumin-induced vacuoles originate from both mitochondria and the ER. At 16 h, there were fewer mitochondria- or ER-derived vacuoles, but the existing vacuoles were much larger. Further staining of curcumin-treated YFP-ER cells with MitoTracker red revealed that the mitochondria-derived vacuoles were near the nuclei and did not overlap with the ER-derived vacuoles, which were peripheral to the mitochondria-derived vacuoles (Fig. 3B).

Transmission electron microscopy also demonstrated that swelling of both the ER and the mitochondria could often be detected within 4 h of curcumin treatment in MDA-MB-435S cells (Fig. 3C). At 8 h, mitochondria were often observed to fuse, leading to the formation of megamitochondria; at 12 h, fusion among swollen portions of the ER was evident and contributed to the dilation of vacuoles. At time points beyond 12 h, rates of fusion of mitochondria and the ER increased until the cells were almost fully occupied by a few large megamitochondria and expanded ER-derived vacuoles. However, autophagosomes or autophagolysosomes were rarely detected. Furthermore, staining of YFP-Mito cells or YFP-ER cells with LysoTracker red demonstrated that mitochondria- or ER-derived swollen vacuoles did not colocalize with lysosomes (Fig. 3D). Taken together, these results indicate that curcumin-induced vacuoles were the result of the swelling and fusion of mitochondria or ER, rather than a reflection of entrapment of these organelles within autophagosomes and subsequent fusion with lysosomes. In contrast to malignant breast cancer cells, normal MCF-10A cells and HMEC treated with 40 μM curcumin for 24 h showed no evidence of cellular vacuolation or cell death (Fig. 3E). Furthermore, staining of these cells with MitoTracker green or ER Tracker red demonstrated that mitochondrial and ER structures were not altered by treatment with curcumin (Fig. 3E), indicating that curcumin induces dilation of mitochondria and the ER selectively in malignant cancer cells and not in normal breast cells.

Given that mitochondrial and ER enlargement was recently reported to be a characteristic of paraptosis [11,14,15], we next examined whether curcumin-induced cell death in malignant breast cancer cells shared other features of paraptosis. Pretreatment of MDA-MB-435S cells with CHX effectively blocked curcumin-induced cell death (Fig. 4A), as well as mitochondrial and ER expansion (Fig. 4B), suggesting that protein synthesis is required for this process. In addition, the levels of AIP-1/Alix protein, a known inhibitor of paraptosis [12,16], were downregulated by curcumin in MDA-MB-231, MDA-MB-435S, and Hs578T cells, but not in MCF-10A cells (Fig. 4C and Supplementary Fig. S2). Furthermore, forced overexpression of AIP-1/Alix in MDA-MB-435S or Hs578T cells significantly attenuated curcumin-induced cell death compared with untransfected or pcDNA3-transfected cells (Fig. 4D and Supplementary Fig. S3).

We next examined the activities of MAP kinases after treatment of MDA-MB-231 and MDA-MB-435S cells with curcumin and found that p38 activity was not affected (Fig. 5A). By contrast, the activities of JNKs were significantly increased from 4 h after curcumin treatment (Fig. 5A and Supplementary Fig. S4), and ERKs were transiently activated, peaking at approximately 4 h posttreatment. Interestingly, normal MCF-10A cells treated with curcumin showed no change in ERK or JNK activity, but did show a transient increase in p38 activity. An experiment designed to test the functional significance of MAP kinases in this process showed that curcumin-induced cell death in MDA-MB-435S cells was not affected by inhibition of p38 activity with SB203580, but was significantly decreased by the JNK and MEK inhibitors, SP600125 and U0126, respectively (Fig. 5B). These results indicate that JNKs and ERKs may positively regulate curcumin-induced cell death. We found that JNK inhibition by SP600125 more effectively inhibited curcumin-induced ER dilation than mitochondrial dilation, whereas MEK inhibition by U0126 blocked curcumin-induced dilation of both mitochondria and ER (Fig. 5C). A further examination of the role of ERKs using siRNAs showed that curcumin-induced cell death was significantly inhibited by siRNA-mediated suppression of ERK2 but not ERK1 (Fig. 5D). Collectively, our results demonstrate that the induction of paraptosis may contribute to the selective cytotoxicity of curcumin in malignant breast cancer cells.

Proteasomal dysfunction contributes to curcumin-induced paraptosis

Curcumin was recently shown to inhibit proteasomal function [22,23], so we next examined whether impairment of proteasomal function is also associated with curcumin-induced paraptosis. Western blot analysis using an anti-ubiquitin antibody demonstrated progressive accumulation of polyubiquitinated proteins in curcumin-treated MDA-MB-231 and MDA-MB-435S cells, but not in MCF-10A cells (Fig. 6A). Immunocytochemistry using an anti-ubiquitin antibody revealed similar results (Supplementary Fig. S5). Proteasome inhibition has been shown to induce the accumulation of misfolded proteins in the ER lumen and to impose ER stress [24]. Therefore, we further examined whether proteins associated with ER stress are also differentially modulated by curcumin in cancer versus normal cells. Curcumin treatment significantly increased phosphorylation levels of eIF2α as well as the protein levels of...
Curcumin-induced cell death in malignant breast cancer cells is not associated with autophagy. (A) Malignant breast cancer cells were treated with 40 μM curcumin for 12 h and observed. Bars, 20 μm. (B) GFP-LC3-expressing MDA-MB-435S cells were treated with 40 μM curcumin or 6 μM selenite for 8 h and observed under the fluorescence microscope. Bars, 20 μm. (C) MDA-MB-435S cells were pretreated with 3-MA or bafilomycin A (Bafil.) and further treated with 40 μM curcumin or 6 μM selenite for 24 h. Cellular viability was assessed using calcein-AM and EthD-1. Representative images of cells are shown. *P<0.001 vs curcumin or selenite as indicated. (D) MDA-MB-435S cells were transfected with 40 nM scrambled negative control RNA, ATG6 siRNA, or ATG7 siRNA and incubated for 24 h. The expression of ATG6 and ATG7 was analyzed by Western blot. Transfected cells were treated with 40 μM curcumin or 6 μM selenite for 24 h and cellular viability was analyzed using calcein-AM and EthD-1. Representative images of cells are shown. Bars, 20 μm. *P<0.001 vs control; **P<0.001 vs siCtrl.
GRP78/94 and CHOP in MDA-MB-435S and MDA-MB-231 cells, but not in MCF-10A cells (Fig. 6A and Supplementary Fig. S6), indicating that proteasomal dysfunction and/or severe ER stress may contribute to the preferential effects of curcumin on malignant breast cancer cells. Thus, we next asked whether proteasomal dysfunction is important for induction of the observed paraptotic changes,
including mitochondrial and/or ER dilation. Fluorescence microscopic observation showed that treatment of YFP-Mito cells and YFP-ER with proteasome inhibitors (1 μM MG132, 20 μM lactacystin, or 20 μM ALLN) induced vacuole formation. Interestingly, cellular vacuoles in these cells mainly originated from the ER, whereas mitochondria were fragmented but not dilated (Fig. 6B), indicating that proteasomal dysfunction is mainly responsible for ER-associated events in paraptosis. Next, we examined whether paraptotic changes were also induced by other ER stress inducers. Interestingly, brefeldin A, tunicamycin, and thapsigargin did not induce vacuolation or accumulation of polyubiquitinated proteins in the treated cells, although, like curcumin, they did upregulate GRP78/94 and CHOP (Fig. 6C and Supplementary Fig. S7). In addition, these ER stress inducers stimulated processing of caspase-4, -3, and -7, demonstrating that they induce ER stress-mediated apoptosis. These results indicate that proteasomal dysfunction, rather than ER stress itself, is more important for the induction of curcumin-induced paraptosis. In addition, proteasome inhibition may be necessary, but not sufficient, for curcumin-induced paraptosis, suggesting the presence of the other signals that are responsible for mediating the paraptotic events in mitochondria.

Mitochondrial superoxide triggers curcumin-induced paraptosis

We next tested the possible involvement of ROS in curcumin-induced paraptosis, based on previous reports that curcumin gene-
rates ROS (particularly the superoxide anion) during apoptosis [25]. Flow cytometry analysis using H2DCF-DA and MitoSOX red, a fluorescent probe used to detect mitochondrial superoxide [26], demonstrated that ROS levels, in particular mitochondrial superoxide levels, were markedly increased in MDA-MB-435S cells by treatment with 40 μM curcumin, beginning 1 h after exposure (Fig. 7A and Supplementary Fig. S8). Notably, however, the same treatment had no such effect on superoxide or ROS levels in MCF-10A cells. To examine the functional significance of ROS in curcumin-induced cell death, we pretreated MDA-MB-435S cells with various antioxidants and then exposed the cells to 40 μM curcumin for 24 h. Curcumin-induced cytotoxicity was significantly blocked by pretreatment with the general antioxidants NAC and GSH or the MnSOD mimetic MnTBAP in a dose-dependent manner. However, interestingly, pretreatment with PEG–catalase did not affect the curcumin-induced cell death at the concentrations that effectively blocked H2O2-induced increase in ROS levels and subsequent cell death (Fig. 7B and Supplementary Fig. S9). To elucidate the role of MnSOD or catalase in curcumin-induced cell death more clearly, we employed MDA-MB-435S sublines stably overexpressing MnSOD or catalase. Cell death induced by 40 μM curcumin was also significantly blocked by overexpression of MnSOD, but not catalase (Fig. 7C). In addition, curcumin-induced mitochondrial and ER dilation was almost completely blocked by pretreatment with 5 mM NAC, 5 mM GSH, or 100 μM MnTBAP, but not by 1500 U/ml PEG–catalase (Fig. 7D). Next, we investigated the role of mitochondrial superoxide in curcumin-induced paraptotic signals. We found that MnTBAP pretreatment blocked curcumin-induced downregulation of Alix, transient activation of ERK, accumulation of polyubiquitinated proteins, and ER stress responses, including upregulation of GRP78/94 and CHOP (Fig. 8A and Supplementary Fig. S10), indicating that mitochondrial superoxide has a critical role as an initial signal in curcumin-induced paraptosis (Fig. 8B). By contrast, curcumin-
induced activation of JNK was not affected by MnTBAP pretreatment, indicating that the involvement of JNK in curcumin-induced para-
ptosis may be independent of mitochondrial superoxide (Figs. 8A and B and Supplementary Fig. S10).

Taken together, our results demonstrate that both production of mitochondrial superoxide and proteasomal impairment contribute to curcumin-induced paraptosis in malignant breast cancer cells.
Discussion

Therapeutic selectivity, or preferential killing of malignant cancer cells without significant toxicity to normal cells, is one of the most desirable properties of a potential cancer chemotherapeutic agent. In our study, curcumin demonstrated preferential cytotoxicity to malignant breast cancer cells over normal breast cells. Consistent with our results, curcumin has demonstrated selective killing of various cancer cell types while sparing normal cells [3–5]. However, the mechanism underlying the selective cytotoxicity of curcumin against cancer is not yet well understood.

Although caspase-mediated apoptosis is the best-defined cell death program engaged by antitumor agents, studies have shown that apoptosis may not be the major death mode in solid tumors after chemotherapy, and malignant cancer cells tend to resist induction of apoptosis by current treatment protocols [27,28]. Therefore, a better understanding of the regulatory mechanisms governing the different types of nonapoptotic death may aid the development of new and improved strategies for treating malignant cancers. Here, we show for the first time that the paraptosis-inducing activity of curcumin contributes to its selective cytotoxicity against malignant breast cancer cells. Cellular shrinkage, apoptotic bodies, caspase dependency, and inhibition of cell death by overexpression of various antiapoptotic proteins, all of which are characteristics of apoptosis, are rarely detected in malignant breast cancer cells treated with curcumin. Although curcumin induced vacuolation that preceded cell death in malignant breast cancer cells, this vacuolation resulted from the swelling and subsequent fusion of the mitochondria or ER, not from autophagy. As a result, cells in the late phase of curcumin treatment contained small numbers of megamitochondria and a substantially expanded ER, consistent with the idea that the irrecoverable functional loss of these organelles led to irreversible cell death. In addition, paraptotic characteristics, such as a requirement for protein synthesis [11], negative involvement of AIP-1/Alix

Fig. 6. Proteasomal dysfunction contributes to curcumin-induced ER dilation in malignant breast cancer cells. (A) Western blot of the expression of polyubiquitinated proteins, ER stress marker proteins, and β-actin in the cells treated with 40 μM curcumin. (B) YFP-Mito or YFP-ER cells were treated with 1 μM MG132, 20 μM lactacystin, and 20 μM ALLN for 16 h and 40 μM curcumin for 24 h and then observed. Bars, 20 μm. (C) MDA-MB-435S cells were treated with 40 μM curcumin and 2 μg/ml brefeldin A, 10 μM tunicamycin, and 4 μM thapsigargin for 36 h and observed. Cell extracts were prepared from MDA-MB-435S cells treated with ER stress inducers for Western blot.
and positive involvement of ERK and JNK,[12] were commonly observed in curcumin-treated malignant breast cancer cells, but not in normal breast cells.

In this study, we further attempted to investigate the underlying mechanisms involved in curcumin-induced paraptosis. We found that curcumin-treated malignant breast cancer cells, but not normal cells, exhibited significant proteasomal dysfunction and ER stress. ER stress can be induced by agents/conditions that interfere with protein glycosylation (such as tunicamycin), protein transport (such as brefeldin A), and calcium imbalance (such as thapsigargin).[29–31]

In addition, inhibition of proteasome activity has been reported to increase the accumulation of ubiquitinated proteins in the ER, leading to ER stress.[32] An investigation of the functional significance of proteasome dysfunction and/or ER stress in paraptotic events showed that treatment of malignant breast cancer cells with well-known proteasome inhibitors (MG132, lactacystin, or ALLN) mainly induced paraptosis.

Fig. 7. Mitochondrial superoxide plays a critical role in curcumin-induced paraptosis. (A) MDA-MB-435S and MCF-10A cells were treated with 40 μM curcumin for 4 h and loaded with H2DCF-DA or MitoSOX red, and then total ROS or mitochondrial superoxide levels were respectively analyzed by flow cytometry. (B) Effects of various antioxidants on curcumin-induced cell death. MDA-MB-435S cells were pretreated with various antioxidants at the indicated concentrations for 30 min and further treated with 40 μM curcumin for 24 h. Cellular viability was assessed using calcein-AM and EthD-1. *P < 0.001 vs curcumin. (C) Effect of overexpression of MnSOD or catalase. Cells were treated with 40 μM curcumin for 24 h and cellular viability was assessed using calcein-AM and EthD-1. *P < 0.001 vs control. (D) YFP-Mito or YFP-ER cells were pretreated with the indicated antioxidant (5 mM NAC, 5 mM GSH, 100 μM MnTBAP, 1500 U/ml PEG-catalase), further treated with 40 μM curcumin for 16 h, and observed. Bars, 20 μm.
the formation of ER-derived vacuoles (Fig. 6B). By contrast, various ER stress inducers, including brefeldin A, tunicamycin, and thapsigargin, did not induce the accumulation of polyubiquitinated proteins, but instead activated caspase-4, -3, and -7 (Fig. 6C and Supplementary Fig. S7), effects that were not associated with curcumin treatment. These results therefore indicate that proteasome impairment by curcumin contributes to paraptotic changes in the ER, with features distinct from ER stress-induced apoptosis. Therefore, proteasomal dysfunction may be necessary, but not sufficient, for curcumin-induced paraptosis, suggesting the existence of other signals that are responsible for mitochondrial paraptotic changes. The following evidence supports our conclusion that mitochondrial superoxide, rather than H$_2$O$_2$, has a critical early role in the curcumin-induced paraptotic changes seen in both mitochondria and the ER: (1) Mitochondrial superoxide levels were rapidly and progressively increased after curcumin treatment (Fig. 7A and Supplementary Fig. S8). (2) Both curcumin-induced vacuolation of mitochondria and ER and subsequent cell death were almost completely blocked by MnTBAP, but not by PEG-catalase (Figs. 7B and D). (3) Overexpression of MnSOD, but not catalase, significantly inhibited curcumin-induced cell death (Fig. 7C). (4) Scavenging of mitochondrial superoxide by pretreatment with MnTBAP inhibited the curcumin-induced paraptotic responses, including Alix downregulation and ERK activation, and also blocked polyubiquitinated protein accumulation and ER stress responses (Fig. 8A and Supplementary Fig. S10).

As shown in Figs. 7B and D, both NAC and GSH exerted a strong blocking effect on curcumin-induced paraptosis, whereas either PEG-catalase or overexpression of catalase did not (Figs. 7B, C, and 7D). NAC can act as an antioxidant through at least two processes: (1) scavenging ROS through a reaction with its thiol group and (2) stimulating glutathione synthesis after being converted to cysteine and thereby serving as a GSH donor. Therefore, we tested whether NAC and GSH might exert their inhibitory effect on curcumin-induced cell death by modulating GSH levels, rather than by scavenging H$_2$O$_2$. When we analyzed the changes in intracellular GSH levels after curcumin treatment, we found that exposure of MDA-MB-435S cells to curcumin induced a rapid time- and dose-dependent reduction of intracellular GSH levels (Supplementary Fig. S11A). Furthermore, curcumin-induced cell death in MDA-MB-435S cells was dose-dependently accelerated by L-buthionine-[S,R]-sulfoximine (BSO), a glutathione synthesis inhibitor; ethacrynic acid, an inhibitor of glutathione S-transferase that catalyzes GSH–substrate conjugation;
paraptosis also in these cells (Supplementary Fig. S11B). In contrast, in malignant breast cancer cells, demonstrating that curcumin induces cells as well as in SNU-387 and SNU-449 hepatoma cells (Supplementary Fig. S11C). Taken together, these results suggest that modulation of intracellular GSH levels may play a key role in curcumin-induced paraptosis, possibly contributing to mitochondrial superoxide production. Curcumin is a Michael acceptor and thus can react with sulfhydryl groups [35]. It has been shown to induce mitochondrial membrane permeability transition pores through membrane protein thiol oxidation [36]. Interestingly, curcumin was reported to form a covalent adduct with the nascent selenol/thiol of the active site of thioredoxin reductase, shifting this enzyme from an antioxidant to a pro-oxidant [37]. Considering these previous results, we cannot exclude the possibility that thiol oxidation of the protein(s) affecting the cellular redox status may contribute to curcumin-induced paraptosis in malignant breast cancer cells.

Interestingly, inhibition of ERK with U0126 blocked dilation of both mitochondria and the ER (Fig. 5C). Furthermore, ERK inhibition also inhibited the accumulation of polyubiquitinated proteins and the ER stress response (Supplementary Fig. S12 and Fig. 8B). Collectively, ERKs (specifically ERK2) may act as downstream mediators of mitochondrial superoxide in curcumin-induced paraptotic signaling. By contrast, MnTBA treatment did not affect curcumin-induced JNK activation (Fig. 8A), and JNK inhibition with SP600125 mainly attenuated ER dilation without affecting mitochondrial dilation (Fig. 5C). Furthermore, JNK inhibition partially blocked curcumin-induced accumulation of polyubiquitinated proteins and ER stress responses (Supplementary Fig. S12). Previous reports have shown that the ERK signaling cascade is important for the induction of mitochondrial vacuolation [38] and oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation but not by JNK1/2 [39]. These results indicate that JNK may primarily contribute to curcumin-induced ER dilation, although the detailed regulatory mechanisms remain to be determined.

To test whether curcumin-induced paraptosis is restricted to malignant breast cancer cells, we examined the effects of curcumin on other types of cancer cells. We found that curcumin induced cytoplasmic vacuolation cell death in DLD-1 and SW837 colon cancer cells as well as in SNU-387 and SNU-449 hepatoma cells (Supplementary Fig. S13). In particular, the effects of z-VAD-fmk, cycloheximide, antioxidants, and inhibitors of MAP kinases on curcumin-induced cell death in DLD-1 and SW837 cells were very similar to those observed in malignant breast cancer cells, demonstrating that curcumin induces paraptosis also in these cells (Supplementary Fig. S14). In contrast, curcumin induced mixed modes of cell death, including apoptosis, necrosis, and paraptosis, in HCT116, SW480 colon cancer cells, HepG2, and SK-Hep-1 hepatoma cells. The underlying mechanisms by which curcumin induces different modes of cell death depending on the cell type remain to be clarified. Epidemiological studies [40] have provided evidence that the low incidence of colorectal cancer observed in India is associated with diets high in curcumin. Curcumin exhibits great promise as a therapeutic agent and is currently in human clinical trials for colon and pancreatic cancer and multiple myeloma [41]. Notably, however, a recent study has shown that curcumin may exert tumor-promoting activity in the lung, possibly by producing a pro-oxidant environment [42]. These results suggest that the clinical use of curcumin as an anti-cancer agent may require extensive preclinical studies to consider potential organ-specific effects of curcumin.

In conclusion, the induction of paraptosis may contribute to curcumin-induced cytotoxicity in malignant breast cancer cells that exhibit apoptotic machinery defects. Thus, investigation of the molecular basis of curcumin-induced paraptosis may provide potential new therapeutic strategies for selectively killing malignant breast cancer cells by induction of paraptosis.

Acknowledgments

We thank Dr. Yoshimori of Osaka University, Japan, for the GFP-LC3 construct. This work was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A080426).

Appendix A. Supplementary data

References

[4] Shankar, S.; Srivastava, R. K. Involvement of Bcl-2 family members, phosphati-
dylinositol 3′-kinase/AKT and mitochondrial p53 in curcumin (diferuloyl-

[7] Reuter, S.; Eiles, S.; Dico, M.; Aggarwal, B. B.; Diederich, M. Modulation of anti-

