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Abstract: Discontinuing mechanical ventilation remains challenging. We developed a machine learn-
ing model to predict weaning outcomes using only continuous monitoring parameters obtained
from ventilators during spontaneous breathing trials (SBTs). Patients who received mechanical
ventilation in the medical intensive care unit at a tertiary university hospital from 2019–2021 were
included in this study. During the SBTs, three waveforms and 25 numerical data were collected
as input variables. The proposed convolutional neural network (CNN)-based weaning predic-
tion model extracts features from input data with diverse lengths. Among 138 enrolled patients,
35 (25.4%) experienced weaning failure. The dataset was randomly divided into training and test
sets (8:2 ratio). The area under the receiver operating characteristic curve for weaning success by
the prediction model was 0.912 (95% confidence interval [CI], 0.795–1.000), with an area under the
precision-recall curve of 0.767 (95% CI, 0.434–0.983). Furthermore, we used gradient-weighted class
activation mapping technology to provide visual explanations of the model’s prediction, highlighting
influential features. This tool can assist medical staff by providing intuitive information regarding
readiness for extubation without requiring any additional data collection other than SBT data. The
proposed predictive model can assist clinicians in making ventilator weaning decisions in real time,
thereby improving patient outcomes.

Keywords: ventilator weaning; machine learning; extubation; prediction; visual explanation

1. Introduction

Estimating an appropriate weaning time from mechanical ventilation is an essential
clinical decision in critical care. Premature attempts to extubate patients increase the risk of
ventilator-associated pneumonia [1,2], prolonged intensive care unit (ICU) stay [3,4], and
mortality [1,3,4]. Meanwhile, an unnecessarily prolonged duration of mechanical ventila-
tion causes an enormous economic health burden [5,6] and is associated with deteriorated
clinical outcomes [7,8]. Therefore, an accurate prediction tool for deciding when patients
are ready for extubation is critical for managing patients with respiratory failure.

Previously proposed weaning indices have shown conflicting results, as over one-
quarter of patients require reintubation despite meeting the criteria for such indices, such
as the rapid shallow breathing index (RSBI) [9–12]. With the recent emergence and ad-
vancement of artificial intelligence, several studies have incorporated machine learning
methods to facilitate efficient clinical judgments in the ICU, including those related to air-
way management [13], acute kidney injury [14,15], pressure ulcers [16], and mortality [17].
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Pioneering studies have been conducted using machine learning methods that incorporate
diverse features to predict the success of ventilator weaning [18–21]. These features include
demographic information (i.e., age, sex), comorbidities, laboratory results (i.e., electrolyte
levels, arterial blood gas analysis), vital signs (i.e., blood pressure, heart rate, respiratory
rate), respiratory parameters (i.e., tidal volume, ventilator mode), medications (i.e., vaso-
pressors, antibiotics), treatment type (transfusion, continuous renal replacement therapy),
and clinical scores (i.e., Acute Physiologic and Chronic Health Evaluation II [APACHE II],
RSBI). However, the predictive machine-learning models in use have limitations, such as
the burden on medical staff to promptly collect bedside information, and the intricacies of
processing this data contributes to the complexity.

In this study, we aimed to develop a predictive machine learning model for weaning
outcomes which would directly analyze continuous ventilator data, such as raw waveforms
and numerical monitoring parameters, during routinely performed spontaneous breathing
trials (SBTs) before extubation. Furthermore, we attempted to visually depict the features
that affect the predictive model’s results in the continuous waveform data. Unlike previ-
ous studies, this method eliminates the need for medical staff to collect or compute any
additional information beyond that collected during SBTs. Furthermore, this tool instantly
provides intuitive information regarding a patient’s readiness for extubation. To improve
the efficiency and effectiveness of the weaning process, we focused only on the ventilator
parameters collected during SBTs.

2. Materials and Methods
2.1. Data Sources and Participants

We enrolled patients sequentially admitted to the medical ICU at a Ajou University
Hospital in South Korea between January 2019 and September 2021. Patients’ clinical data
were obtained from electronic medical records to identify their baseline characteristics,
and ventilator parameters were extracted by directly connecting the acquisition software
(Hamilton Medical ventilator data logger, version 5.0, Bonaduz, Switzerland) to the ventila-
tor during SBTs. Twenty-five types of numerical data and three types of waveform data
were extracted as the ventilator parameters (Supplementary Table S1). Waveform data
were sampled every 15 ms, and numerical data were collected during each breath. The
predictive model for weaning outcomes relied solely on data from the ventilator waveform
and numerical recordings during the SBT, without incorporating data from other sources.

This retrospective study used anonymized data and was approved by the Institutional
Review Board of Ajou University Hospital (IRB No. AJOUIRB-MDB-2022-094), which
waived the requirement for informed consent. This study was conducted in accordance with
the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or
Diagnosis (TRIPOD) guidelines for prediction model development and validation [22].

Eligible participants included individuals aged 18 years or older who had undergone
mechanical ventilation for more than 24 h and who met the weaning criteria. Weaning crite-
ria included resolution or improvement of the underlying condition leading to intubation,
hemodynamic stability (systolic blood pressure between 90 and 160 mmHg and heart rate
below 140 beats per minute with low/no doses of vasopressors), stable neurological status
(no deterioration in Glasgow Coma Scale (GCS) score within the last 24 h), respiratory sta-
bility (oxygen saturation above 90% with fraction of inspired oxygen [FiO2] not exceeding
0.4, respiratory rate below 35 breaths per minute, and spontaneous tidal volume above
5 mL per kg), and intact cough and gag reflexes [23–26]. Exclusion criteria included patients
with tracheostomy, with a do-not-reintubate order, and without recorded ventilator data.

2.2. Study Design

Each patient received a 30 min SBT with a maximum pressure support ventilation of
6 cm H2O and positive end-expiratory pressure. The FiO2 was maintained at the same
level as that before the SBT. Following the stable completion of the 30 min SBT, patients
were extubated and provided with either a high-flow nasal cannula or an air entrainment
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mask for oxygen therapy. Patients unable to tolerate a SBT were maintained on mechanical
ventilation. Failure to meet the SBT criteria included agitation, anxiety, deterioration of
consciousness, a respiratory rate exceeding 35 breaths per minute or the use of accessory
muscles, oxygen saturation levels below 90% (measured by pulse oximetry) with FiO2
above 0.5, heart rate surpassing 140 beats per minute or a 20% increase from baseline,
systolic blood pressure below 90 mmHg, or the development of an arrhythmia.

Patients who underwent extubation were classified into two groups, the weaning
success and weaning failure groups, based on their condition within 48 h after extubation.
A patient was considered to be in the weaning success group if they maintained a stable
condition for >48 h after extubation. In contrast, patients who required reintubation due to
respiratory failure within 48 h after extubation were included in the weaning failure group.
The criteria for respiratory failure were as follows: respiratory acidosis with a pH level
of less than 7.3, partial pressure of carbon dioxide (PaCO2) levels higher than 45 mmHg,
oxygen saturation levels below 90% with FiO2 levels above 0.5, respiratory rate exceeding
35 breaths per minute, deterioration of consciousness, severe agitation, or clinical signs of
respiratory fatigue. The clinical data of all enrolled patients were reviewed by two critical
care specialists (W.Y.C. and J.E.P.), who verified their inclusion in either the success or
failure groups.

2.3. Proposed Weaning Prediction Model

Our proposed weaning prediction model was designed using two convolutional neu-
ral networks (CNNs) to extract features from multimodal input data with various sequence
lengths. We adopted MobileNetV3-0.75 as the backbone [27], which was designed for mo-
bile device environments, making our model adaptable to various hardware environments.

2.3.1. Data Flow

The proposed model was applied by feeding the ventilator waveform and numer-
ical data into the feature extractor. Subsequently, the feature extractor generated out-
puts, which were fused with other outputs from the feature extractors to create 20 of the
720 features. This fusion allows the proposed model to analyze the correlation between
the ventilator numerical data and waveform data. The fused outputs were then fed into a
multi-layer perceptron (MLP), in which the outputs were concatenated and fed into the
classifier. Finally, through the classifier’s output, the proposed model provided a prediction
for weaning success or failure from mechanical ventilation (Figure 1).
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Figure 1. The overall architecture of the proposed network. Our model for predicting weaning uses
two convolutional neural networks to analyze various data types with varying sequence lengths and
extract important features. MLP, multi-layer perceptron.
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2.3.2. Feature Extractor and Classifier

The MobileNetV3-Large 0.75 constitutes the feature extractor and classifier [27]. Table 1
lists the detailed operators [27]. The feature extractor consisted of two convolution layers,
15 bottlenecks, and a pooling layer. We then constructed the classifier using the remaining
modules [27]. The output channel size of the last layer in the classifier was set at 1 for the
binary classification task. The order of operations in the feature extractor and classifier are
listed in Table 1.

Table 1. Specification of the feature extractor and classifier.

MobileNetV3
Operator Expand Size Out Channel Activation

Function

Feature
extractor

Conv2d - 16 H-Swish
bneck, 3 × 3 16 16 ReLU
bneck, 3 × 3 64 24 ReLU
bneck, 3 × 3 72 24 ReLU
bneck, 5 × 5 72 32 ReLU
bneck, 5 × 5 96 32 ReLU
bneck, 5 × 5 96 32 ReLU
bneck, 3 × 3 192 64 H-Swish
bneck, 3 × 3 160 64 H-Swish
bneck, 3 × 3 144 64 H-Swish
bneck, 3 × 3 144 64 H-Swish
bneck, 3 × 3 384 88 H-Swish
bneck, 3 × 3 528 88 H-Swish
bneck, 5 × 5 528 120 H-Swish
bneck, 5 × 5 720 120 H-Swish
bneck, 5 × 5 720 120 H-Swish

Conv2d, 1 × 1 - 720 H-Swish
Pool, 7 × 7 - - -

Classifier

Conv2d, 1 × 1,
NBN - 1280 H-Swish

Conv2d, 1 × 1,
NBN - 1 -

Conv2d, two-dimensional convolution layer; H-Swish, hard swish; bneck, bottleneck; ReLU, rectified linear unit;
NBN, non-bottleneck.

2.3.3. MLP and Subblock

Figure 2a shows the proposed MLP architecture. The MLP encodes the fused feature
shown in Figure 1 to a lower dimension. This module consists of four layers: 1 × 1
convolution, hard swish [27] as an activation function, and two sub-blocks. The order and
input and output channel sizes of the layers are shown in Figure 2a.

Figure 2b shows the proposed subblock of the MLP. We proposed a sub-block inspired
from previous studies [28,29]. The subblock uses a linear layer instead of a convolution
layer to extract information from the one-dimensional input features. This module consists
of linear layers, batch normalization [30], and two sigmoid linear units [31]. The order of
these layers is illustrated in Figure 2b. The subblock adds its input feature and the output of
the second linear layer using a skip connection [28]. This summation prevents information
loss in the forward path and gradient loss in the backward path [28].
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2.4. Training and Validation

The dataset was divided randomly in an 8:2 ratio into training and test sets to develop
a predictive model. The training set was used to optimize the model parameters and
select the best model hyperparameters. The model performance was evaluated using an
independent holdout test set. This approach allowed us to evaluate the performance of our
model effectively and optimize its parameters. In the holdout test dataset, the performance
of the predictive model was assessed using nine metrics: area under the receiver operating
characteristic curve (AUROC), area under the precision-recall curve (AUPRC), sensitivity,
specificity, positive predictive value, negative predictive value, accuracy, F1 score, and
parameter count. Furthermore, the RSBI, which is already used in clinical practice, was
used to accurately compare and evaluate the model’s performance.

The waveform and numerical data from the ventilator contained 3 and 25 features,
respectively. Each feature of the data was normalized with a time axis using min-max
scaling. Although our model was designed to process various sequence lengths of input
data, one such batch could not be used for model training. In this study, the input sequence
length for training was set to 13,000 and 3500 steps for ventilator waveform and numerical
data, respectively. After normalization, the input training data were randomly cropped
to a defined size before being fed into the proposed model. Finally, the proposed model
was designed to process the input data independent of the sequence length using a CNN.
Entire sequences of ventilator numerical and waveform data were used as model inputs.

The proposed model used a binary cross-entropy function with a sigmoid function as
the loss function. The weights of the model were updated using the AdamW [32] optimizer
equation as follows: learning rate = 1 × 10−4, weight decay = 5 × 10−2, and batch size = 4.
We defined hyperparameters of the MLP and subblocks using grid search with the training
set. This process was conducted with possible layer input, output channel sizes, model
depth, and so on in an iterative manner to find the optimal hyperparameters.

2.5. Gradient-Weighted Class Activation Mapping

A visualization method known as gradient-weighted class activation mapping (Grad-
CAM) was used to identify the factors affecting the prediction results of the proposed



Bioengineering 2023, 10, 1163 6 of 16

model [33]. This method used a gradient from a CNN-based model with a final con-
volutional layer containing high-level features and spatial information to highlight the
important parts of an image for decision-making. This approach made it possible to describe
the prediction process by determining how these features influence the
model’s decision.

2.6. Statistical Analyses

Categorical variables were expressed as numbers and percentages, whereas continuous
variables were summarized using means and standard deviations. We used either the χ2

test or Fisher’s exact test to compare categorical variables, whereas the Mann–Whitney
U test was used for continuous variables. When comparing the baseline characteristics
between the success and failure groups, statistical significance was set at p < 0.05. The
optimal cutoff value for predicting weaning outcomes in the machine learning models was
determined using Youden’s index.

Statistical analyses were conducted using Python 3.9, PyTorch 1.10.0, and an Nvidia
RTX 3090 GPU. The backbone source code of the proposed model was obtained from a
previous study [34].

3. Results
3.1. Baseline Characteristics

This study included 138 patients with an average age of 68.4 ± 15.1 years (Figure 3).
Pneumonia was the most common reason for admission to the ICU, accounting for 71.7%
of all cases. The weaning success and failure groups showed no significant differences
in APACHE II scores and comorbidity, which are indicators of severity at the time of
ICU admission. Similarly, no significant differences were observed in the duration of
mechanical ventilation, number of previous weaning failures, and use of neuromuscular
blocking agents, which are known risk factors for weaning failure. Arterial blood gas
analysis was conducted to assess the patient’s oxygenation and ventilation just before the
SBT, which showed that the PaCO2 level was slightly higher in the failure group. However,
this difference was not statistically significant (Table 2).
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Table 2. Baseline characteristics of study participants according to weaning outcomes

Total
(N = 138)

Success Group
(N = 103)

Failure Group
(N = 35) p Value

Age, mean ± SD, y 68.4 ± 15.1 68.9 ± 14.6 67.0 ± 16.6 0.507
Sex, male/female, n 87/51 67/36 20/15 0.403
Body weight, mean ± SD, kg 59.7 ± 14.3 60.8 ± 15.0 56.6 ± 11.5 0.136
Height, mean ± SD, cm 164.2 ± 9.6 164.1 ± 9.9 164.4 ± 8.6 0.899
BMI, mean ± SD, kg/m2 22.1 ± 4.6 22.5 ± 4.8 20.9 ± 3.7 0.072

Main cause of ICU admission, n, % 0.869
Pneumonia 99 (71.7) 76 (73.8) 23 (65.7)
COPD/Asthma AE 10 (7.2) 7 (6.8) 3 (8.6)
Pulmonary hemorrhage 3 (2.2) 2 (1.9) 1 (2.9)
Sepsis 4 (2.9) 3 (2.9) 1 (2.9)
Gastrointestinal bleeding 2 (1.4) 2 (1.9) 0 (0)
Neurologic disease 2 (1.4) 1 (1.0) 1 (2.9)
Pulmonary edema 9 (6.5) 6 (5.8) 3 (8.6)
Others 9 (6.5) 6 (5.8) 3 (8.6)

APACHE II score, mean ± SD 22.6 ± 8.3 23.0 ± 8.4 21.5 ± 7.9 0.332
Comorbidity, n, %

HTN 62 (44.9) 47 (45.6) 20 (42.9) 0.776
Diabetes mellitus 41 (29.7) 35 (34.0) 6 (17.1) 0.060
COPD 13 (9.4) 8 (7.8) 5 (14.3) 0.315
Chronic lung disease 40 (29.0) 26 (25.2) 14 (40.0) 0.096
Neurological disease 46 (33.3) 34 (33.0) 12 (34.3) 0.890
Cancer 27 (19.6) 22 (21.4) 5 (14.3) 0.362
Renal disease 15 (10.9) 13 (12.6) 2 (5.7) 0.355
Liver disease 12 (8.7) 10 (9.7) 2 (5.7) 0.730

Residence type before admission 0.411
Home 99 (71.7) 72 (69.9) 27 (77.1)
Hospital or nursing home 39 (28.3) 31 (30.1) 8 (22.9)

ABGA before SBT
PaO2 106.6 ± 32.1 107.8 ± 29.7 103.3 ± 38.5 0.478
PaCO2 37.6 ± 10.2 36.6 ± 9.9 40.3 ± 10.8 0.063
PF ratio 319.5 ± 100.1 325.4 ± 92.8 302.1 ± 118.6 0.235

Length of mechanical ventilation
before SBT, mean ± SD 7.7 ± 6.2 7.53 ± 6.5 8.2 ± 4.8 0.598

Prior failed weaning attempt 20 (14.5) 13 (12.6) 7 (20.0) 0.284
Use of NMBAs 25 (18.1) 18 (17.5) 7 (20.0) 0.738

Values are presented as the mean with standard deviation (SD) or number (%). BMI, body mass index; ICU,
intensive care unit; COPD, chronic obstructive pulmonary disease; AE, acute exacerbation; APACHE II, Acute
Physiologic and Chronic Health Evaluation II; HTN, hypertension; ABGA, arterial blood gas analysis; SBT,
spontaneous breathing test; MV, mechanical ventilation; PaO2, partial pressure of oxygen in the arterial blood;
PaCO2, partial pressure of carbon dioxide; PF ratio, ratio of arterial oxygen partial pressure to fraction of inspired
oxygen; NMBAs, neuromuscular blocking agents.

3.2. Weaning Prediction Performance

The AUROC of the prediction model for weaning success was 0.912 (95% confidence
interval [CI], 0.795–1.000) and the AUPRC was 0.767 (95% CI, 0.434–0.983) (Figure 4). The
optimal cutoff value for predicting weaning outcomes, as confirmed using Youden’s index,
was 0.475. Moreover, the proposed model had a parameter count of 17,124,721. The total
computation time for the test set was measured to be 3.43613 s.
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This study compares the traditional method (RSBI) of predicting successful weaning
from mechanical ventilation with a machine learning model. The RSBI cutoff value of
105 breaths/min/L was used for comparison. The results demonstrated that the machine
learning model outperformed the RSBI, with higher AUROC (0.912 vs. 0.558) and AUPRC
(0.767 vs. 0.522) values (Table 3). Moreover, the machine learning model demonstrated supe-
rior discrimination ability compared with that of the RSBI in other predictive performance
evaluation variables (Table 3).

Table 3. Comparison of performance in the hold-out test set.

AUROC AUPRC Sensitivity Specificity NPV PPV Accuracy F1 Score

ML model 0.912
(0.795–1.000)

0.767
(0.434–0.983)

0.857
(0.555–1.000)

0.808
(0.619–0.952)

0.943
(0.800–1.000)

0.608
(0.286–0.889)

0.821
(0.679–0.929)

0.698
(0.400–0.909)

RBSI 0.558
(0.265–0.871)

0.522
(0.148–0.841)

0.423
(0.000–0.833)

0.907
(0.762–1.000)

0.820
(0.667–0.958)

0.607
(0.001–0.999)

0.783
(0.607–0.929)

0.476
(0.001–0.824)

AUROC, area under the receiver operating characteristic; AUPRC, area under the precision-recall curve;
NPV, negative predictive value; PPV, positive predictive value; ML, machine-learning; RSBI, rapid shallow
breathing index.

3.3. Gradient-Weighted Class Activation Mapping

Grad-CAM was used to determine which waveforms significantly impacted the pre-
diction of weaning success or failure. The results of the Grad-CAM analysis using the
ventilator-derived waveform data from a patient who was unable to wean are presented in
Figure 5. The brightness intensity of the image corresponds to the degree of influence on
the model’s prediction. Regions with higher brightness signify stronger influence on the
model’s prediction. In Figure 5, the highlighted lesions were visible during the inspiratory
phase, an active process involving the activation of neural pathways and contraction of
inspiratory muscles. A rounded inspiratory flow and a significant decrease in airway pres-
sure (Paw) during inspiration are signs of low ventilator assistance concerning the patient’s
demands [35]. Discrepancies between the patient’s needs and the ventilator assistant are
known to be associated with unfavorable outcomes [36]. Medical staff can interpret these
signs as indicating that the patient is not yet ready for ventilator weaning and that the
model’s weaning failure predictions are reliable.
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Figure 5. Gradient-weighted class activation mapping for ventilator-derived waveform data.
Gradient-weighted class activation mapping (Grad-CAM) analysis can be used as a visualization
tool to identify the areas of the waveform that are important for predicting weaning success. The
Grad-CAM results are presented above the graph of each parameter. The brighter regions indicate
areas that significantly influenced the model’s prediction results. Paw, airway pressure; Grad-CAM,
the gradient-weighted class activation mapping.

Grad-CAM is a helpful tool for medical professionals to identify errors in predictive
judgment. For instance, if a patient is predicted to have failed weaning, but the medical
staff confirms through Grad-CAM that the factor that affected the result was noise caused
by coughing (Figure 6). Then, the prediction model’s results will not be trusted. Figure 6
showed a patient who succeeded in weaning, contrary to the prediction model results.
Therefore, Grad-CAM can help medical professionals improve the accuracy of predictive
models and provide better patient care.
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Figure 6. Example of misclassified errors using the predictive model. The patient was successfully
weaned off the ventilator despite being predicted to fail. Figure 6 shows an artifact waveform caused
by coughing, which was mistakenly identified as a sign of weaning failure by the machine learning
model. The Grad-CAM tool allows medical staff to review the factors influencing the model’s
decision and correct any errors. Paw, airway pressure; Grad-CAM, the gradient-weighted class
activation mapping.
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4. Discussion

In this study, we developed a machine learning model to predict ventilator weaning
outcomes in patients undergoing mechanical ventilation in a medical ICU. The machine
learning model used only continuous ventilator parameters collected during SBT, which
is routinely conducted during the weaning process. This study compared the predictive
performance of the current model with that of the RSBI, a method already being used in
clinical practice for predicting weaning. The predicted performance of the machine learning
model was 0.912 for the AUROC and 0.767 for the AUPRC, showing superior results to
those of the RSBI. In addition, Grad-CAM was used to visualize the waveform features that
significantly influenced the prediction of weaning outcomes.

Many studies have explored the application of machine learning for predicting wean-
ing outcomes (Table 4). With the advent of electronic health records, the extraction and
integration of an array of patient information based on time series has become feasible,
enabling studies that combine multiple modalities. A recent study developed a data-
driven framework for predicting extubation outcomes in surgical ICU patients [18]. This
framework included variable selection, prediction model, and Bayesian decision analy-
sis processes. The model incorporated patient data, including demographic information,
laboratory results, vital signs, and clinical scores such as the GCS, APACHE II, and RSBI.
The authors also attempted to provide a comprehensive view of the extubation decision
process, including respiratory, laboratory, biochemical, and neurological measurements.
The developed model demonstrated a sensitivity of 0.830 and a specificity of 0.890 for
prediction. Another single-center study introduced a machine learning tool for aiding
in decision-making for extubation [37] that effectively integrates a variety of heteroge-
neous data, including patient demographics (age, sex, and body mass index), medical
records (RSBI; respiratory rate oxygen index; GCS, Richmond Agitation-Sedation Scale,
and APACHE II scores), medications (sedatives and analgesics), and respiratory event logs
(ventilator mode, tidal volume, peak inspiratory pressure, plateau pressure, and FiO2).
Although the model’s performance was internally validated, this prediction tool exhibited
excellent predictive capabilities, with an AUROC of 98.3% and an accuracy of 94.6%. Other
Medical Information Mart for Intensive Care (MIMIC)-III database studies predicted wean-
ing outcomes with over 25 features, including demographics, comorbidities, vital signs,
laboratory results, transfusions, fluids, medications, continuous renal replacement therapy,
and the Charlson comorbidity index [20,21]. The results were promising with an AUROC
of 0.80–0.94, indicating good predictive performance.

Table 4. Summary of studies using machine learning models to predict mechanical ventilator
weaning.

Authors Data Source Variables ML Model Performance Study Design

Tsai et al. [18] Surgical ICU
(n = 704)

17 features

• Demographics (e.g., sex and
weight)

• Laboratory results (e.g., WBC,
platelets, glucose, sodium)

• Clinical scores (GCS and APACHE
II scores, RSBI)

• Ventilator parameter (maximal
inspiratory pressure)

• Vital signs (HR, blood pressure)

Machine learning
ensemble

Sensitivity: 0.830,
Specificity: 0.890 Retrospective
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Table 4. Cont.

Authors Data Source Variables ML Model Performance Study Design

Fabregat et al.
[37]

ICU
(n = 697)

20 features

• Demographics (age, sex, and body
mass index)

• Medical records (e.g., RSBI; ROX
index; GCS, RASS, and APACHE
II scores)

• Medications
(cumulative/administered dose of
sedatives and analgesics)

• Ventilator parameter (e.g., peak
inspiratory pressure, plateau
pressure, and FiO2).

Support vector
machine AUC: 0.98 Retrospective

Zhao et al. [20] MIMIC-IV
(n = 16,189)

19 features

• Demographics (age and body
mass index)

• Medical records (stroke and urine
output)

• Vital signs (e.g., HR, RR,
saturation, temperature, and CVP)

• Respiratory parameters (e.g., tidal
volume, PEEP, mean airway
pressure, and PSV level)

• Laboratory results (pH)
• Medications (e.g., antibiotics)

Categorical
boosting

(CatBoost)

AUC:
(internal) 0.835,
(external) 0.803

Retrospective
(development),

Prospective
(validation)

Jia et al.
[21]

MIMIC-III
(n = 2299)

25 features

• Demographic information (e.g.,
age, admission type, reason for
intubation, RASS score)

• Vital signs (e.g., HR, RR)
• Laboratory results (e.g., sodium

level, serum anion gap, partial
pressure of oxygen/carbon
dioxide)

• Respiratory parameters (e.g.,
duration of mechanical ventilation,
tidal volume)

1d-CNN AUC: 0.94 Retrospective

Park et al.
[19]

Medical ICU
(n = 89)

10 features

• Vital signs (ECG, respiratory
impedance, PPG, arterial blood
pressure, HR, and RR)

• Ventilator parameters (tidal
volume, inspiratory time, IE ratio)

Random forest AUC: 0.81 Retrospective

Park et al. Medical ICU
(n = 138)

28 features

• Ventilator parameters (waveform:
pressure, flow, and volume.
numerical: inspiratory tidal
volume, spontaneous expiratory
tidal volume, breathing frequency,
IE ratio, airway occlusion
pressure)

CNN AUC: 0.912 Retrospective

1d-CNN, one-dimensional convolutional neural network; APACHE, Acute Physiologic and Chronic Health
Evaluation; AUC, area under the receiver operating characteristic curve; CNN, convolutional neural network; CVP,
central venous pressure; ECG, electrocardiogram; FiO2, fraction of inspired oxygen; GCS, Glasgow Coma Scale;
HR, heart rate; ICU, intensive care unit; IE ratio, the ratio of inspiratory and expiratory time; MIMIC-IV, Medical
Information Mart for Intensive Care-IV; ML model, machine learning model; PEEP, positive end-expiratory
pressure; PPG, photoplethysmogram; PSV, pressure support ventilation; RASS, Richmond Agitation Sedation
Scale; ROX index, respiratory rate oxygen index; RR, respiratory rate; RSBI, rapid shallow breathing index; WBC,
white blood cell.
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In our previous study [19], we used a conventional machine learning technique as
the random forest classifier. For this classifier, we analyzed features from patients and
extracted specific biosignal-based features from whole features. The Poincaré plot, sample
entropy, and detrended fluctuation analysis were used in this process. Finally, the random
forest classifier predicted weaning success using the selected features and RSBI. Using
conventional machine learning techniques and feature analysis, we achieved high weaning
prediction performance in our previous study, with an AUROC of 0.81. Despite the
successful results, there were limitations. First, feature selection methods could have
contributed to failure by not choosing important features or selecting the wrong features.
Second, the weaning prediction performance was insufficient for practical use. In this study,
the proposed method required neither feature selection of data nor cropping in the time
domain. The proposed model used all features from the ventilator. Thus, our method can
reduce the prediction error produced by using feature selection.

Many studies have shown that utilizing multiple variables from diverse modalities
reduces errors stemming from using only a single-modality approach and improves pre-
diction performance through the incorporation of various types of information. Therefore,
machine-learning models that predict weaning outcomes have been developed using a
wide range of input features. The use of various variables can enhance the performance of
a predictive model. However, this may hinder the real-time application of the model in
clinical practice. Continuously monitoring variables, such as clinical scores (e.g., APACHE
II score and Charlson comorbidity index) and cumulative doses of drugs is particularly
challenging for medical staff, especially when a patient’s condition is rapidly fluctuating.

In our study we aimed to develop a predictive model by devising a method that
could serve as an intuitive aid for medical staff when making weaning decisions at the
bedside for patients in ICU. The breathing pattern observed in routinely conducted SBTs
during the weaning process is an excellent indicator of weaning outcomes [38–40]. Patients
who are unable to successfully wean from mechanical ventilation often exhibit irregular
breathing patterns during SBTs. This can be attributed to factors, such as inadequate
volume capacity, unstable hemodynamic status, and respiratory muscle weakness [7,41].
These unstable respiratory mechanisms can lead to an oxygenation-ventilation imbalance,
ultimately resulting in weaning failure [42,43]. Continuous ventilator monitoring data
provide a more comprehensive view of a patient’s breathing patterns throughout the entire
course of the SBT instead of relying on a single-point approach, such as those adopted by
classic weaning indices. Therefore, by lowering ventilator support during the SBT and
observing the dynamic changes in the patient’s breathing pattern, weaning outcomes can
be predicted in real-time at the bedside.

Although artificial intelligence has the advantage of being able to handle vast data
from various modalities, it still requires improvement to compensate for the unpredictable
situations and countless errors that occur in actual clinical settings. High-quality and
reliable input data are essential for developing a more accurate model and improving
its performance. Although integrating and analyzing multiple modalities may enhance
the performance of predictive models, input data characteristics must be generalized to
collect and use data from various medical institutions, and a high-quality protocol must
be maintained. Although our study used only a single measurement (ventilator data), our
predictive model achieved a good prediction performance by ensuring reliable, high-quality
data. In the ICU, many events affect a patient’s clinical data, such as position changes and
suctioning. Hence, efforts were made to avoid suction as much as possible during the SBT
to increase the accuracy of the collected ventilator data and mitigate potential noise that
could occur during the SBT. We collected data approximately 30 min into the SBT owing to
the relatively short time requirement to allow for quality control procedures. The strength
of our model lies in its ability to produce significant effects using a relatively small amount
of data.

Another strength of this study is that the time-domain sequential ventilator data
were transformed into two-dimensional image data using a CNN-based learning net-
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work. Continuous ventilator waveform data were used as graphical information. The
decision-making process was visually explained through a localization map highlighting
the essential decision-making areas using the Grad-CAM technology. As errors in judgment
for treating severely ill patients could affect the patient’s prognosis, using a clinical decision
support system based on machine learning in clinical settings could pose certain limitations.
However, the model developed in this study could reduce predictive judgment errors and
facilitate its implementation in clinical practice by presenting the waveform features that
form the basis of the decision to medical staff. In other words, the model’s explainability
helps clinicians make better decisions, thereby improving patient outcomes. As a result,
medical staff utilize Grad-CAM to analyze the part of the data that could affect the model’s
prediction results and determine whether the features are meaningful (Figures 5 and 6).

Despite the impressive performance of the proposed model, it had certain limitations
that warrant consideration. First, the limited dataset size raises the possibility of overfitting.
External validation is necessary to ensure accurate evaluation. Second, the number of
patients experiencing weaning failure in the dataset was insignificant, and thus, it might
have hindered the model’s ability to perfectly learn failure patterns. Another limitation
in machine learning models is that those other than CNN may not be applicable due to
the varying length of input data. CNN is more suitable for handling diverse data than
Recurrent neural network (RNN)-based models or transformers, which can only handle
fixed data lengths. Moreover, RNNs and transformers demand substantial computational
resources, and notably, transformers require much larger datasets than other deep learning
networks. Further studies are necessary to explore the potential of different models in the
future. Finally, we could visualize the features that influenced the decision-making process
of the predictive model. It is essential to remember that it can be challenging to confirm a
direct connection between these features and the outcomes. In future studies, we must still
pinpoint a distinct ventilator waveform pattern that can differentiate between successful
and unsuccessful weaning results.

5. Conclusions

We developed a model to predict weaning outcomes using only continuous monitoring
parameters acquired from the ventilator during SBT. This model demonstrated excellent
predictive performance (AUROC, 0.912; AUPRC, 0.767). Furthermore, its ability to visualize
the features that affect the outcome and present them to the medical staff holds great
potential for reducing potential errors that may arise when applying machine learning
models in a clinical setting. Therefore, it is expected to be a promising tool for medical
staff treating ventilator patients, thereby significantly reducing their burden by supporting
real-time decision-making for weaning and improving patient prognosis. In future, we
need to identify a specific ventilator waveform pattern distinguishing between successful
and failed weaning outcomes.
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//www.mdpi.com/article/10.3390/bioengineering10101163/s1, Table S1: Variables used to develop
predictive models for ventilator weaning outcome.
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