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Abstract: A cardiopulmonary exercise test (CPET) is essential for lung resection. However, perform-
ing a CPET can be challenging. This study aimed to develop a machine learning model to estimate
maximal oxygen consumption (VO2max) using data collected through a patch-type single-lead electro-
cardiogram (ECG) monitoring device in candidates for lung resection. This prospective, single-center
study included 42 patients who underwent a CPET at a tertiary teaching hospital from October 2021 to
July 2022. During the CPET, a single-lead ECG monitoring device was applied to all patients, and the
results obtained from the machine-learning algorithm using the information extracted from the ECG
patch were compared with the CPET results. According to the Bland–Altman plot of measured and
estimated VO2max, the VO2max values obtained from the machine learning model and the FRIEND
equation showed lower differences from the reference value (bias: −0.33 mL·kg−1·min−1, bias:
0.30 mL·kg−1·min−1, respectively). In subgroup analysis, the developed model demonstrated greater
consistency when applied to different maximal stage levels and sexes. In conclusion, our model
provides a closer estimation of VO2max values measured using a CPET than existing equations. This
model may be a promising tool for estimating VO2max and assessing cardiopulmonary reserve in
lung resection candidates when a CPET is not feasible.

Keywords: maximal oxygen consumption (VO2max); cardiopulmonary exercise test (CPET); machine
learning model; estimation; lung resection candidates

1. Introduction

Lung cancer is the second most commonly diagnosed cancer and the leading cause
of cancer-related mortality [1]. Surgical resection is considered the best curative option
for lung cancer [2]. However, lung cancer patients are often elderly, have weakened lung
function due to smoking, or have underlying medical conditions [3,4]. Although surgery
may be feasible based on the cancer stage, some patients opt for alternative treatments
due to concerns about post-surgical complications. Fortunately, advancements in surgical
techniques and tools have decreased morbidity and mortality rates, and more patients are
now eligible for lung resection [5,6].

Before lung resection, the patient’s risk and ability to tolerate the procedure were
thoroughly evaluated. This evaluation includes several tests, such as the pulmonary func-
tion test, 6-min walking test, and cardiopulmonary exercise test (CPET) [7]. In particular,
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the CPET helps assess patients’ cardiopulmonary reserve by measuring cardiac output,
ventilation, oxygen uptake, and carbon dioxide output during exercise. Therefore, several
guidelines recommend it as an important predictor of post-thoracotomy morbidity and
mortality in high-stress situations, such as lung surgery and the immediate postoperative
period. According to the British Thoracic Society (BTS), American College of Chest Physi-
cians (ACCP), and European Respiratory Society (ERS) guidelines, some patients who are
not considered suitable for surgery based on forced expiratory volume in one second (FEV1)
and forced vital capacity (FVC), or diffusing capacity of the lung for carbon monoxide
(DLco) may still be able to undergo the procedure if the results of the CPET permit it [8–10].

The CPET is a reliable method that ensures precise and reproducible results by con-
tinuously monitoring multiple parameters in a controlled environment. In particular,
guidelines provide standards for measuring oxygen consumption (VO2), such as maxi-
mal oxygen consumption (VO2max) [9] and peak VO2 [8,10]. However, owing to the high
cost of equipment such as gas analyzers and the need for trained technicians to collect
and interpret data, the use of VO2 assessments for risk prediction in clinical practice is
limited [11]. To overcome these limitations in utilizing the CPET in clinical settings, two
organizations, the American College of Sports Medicine (ACSM) and the Fitness Registry
and Importance of Exercise National Database (FRIEND), have developed equations that
estimate VO2max using information about patients and their exercise tests [12–14]. These
equations are frequently employed in evaluating physical activity in patients and clinical
studies [15,16].

Recently, with the development of various wearable devices, the evaluation and track-
ing of an individual’s physical activity have become more accessible. These devices provide
valuable information that helps identify a patient’s baseline condition, including daily
steps, heart rate, energy expenditure, and cardiorespiratory fitness. An electrocardiogram
(ECG) patch is an example of wearable technology used in remote monitoring equipment
to track patients’ regular activities or rehabilitation exercises at home and send clinical data
to medical staff. Wearable devices play a crucial role in monitoring due to their potential
capabilities [17].

This study aimed to develop a machine learning model to estimate VO2max using
data collected through a patch-type single-lead ECG monitoring device during maximal
exercise tests in patients with pulmonary disease who are candidates for lung resection.
Furthermore, the VO2max estimated through the machine learning model and the VO2max
obtained through the clinical equations, which are the previously used estimated VO2max
equations, were compared with the actual VO2max measured through the CPET. Through
this study, we sought to evaluate the usefulness of a machine learning model in estimating
VO2max for patients requiring lung resection surgery with limited exercise capacity or when
a CPET is not feasible due to resource constraints.

2. Materials and Methods
2.1. Study Design and Subjects

This prospective single-center study was performed at a tertiary teaching hospital
in South Korea between October 2021 and July 2022. Eligible participants were adults
(aged ≥19 years) who had been diagnosed with cancer through biopsy or were strongly
suspected of having cancer without tissue examination results, leading to scheduled lung
resection. Only patients who voluntarily agreed to participate in the study were enrolled.
Patients with contraindications to a CPET were excluded, including resting O2 saturation
levels < 85%, acute coronary insufficiency, uncontrolled arrhythmia, decompensated heart
failure, and acute infection [18]. Patients who had previously experienced allergic reactions
to the investigational devices or their components were also excluded.

As part of the preoperative evaluation, all patients underwent a CPET. Before starting
the CPET, a patch-type single-lead ECG monitoring device (modiCARE-MC100; SEERS
Technology, Pyeongtaek-si, Gyeonggi-do, Republic of Korea) was attached to the skin in
front of the chest for examination. This wearable device was kept in place until the comple-
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tion of the CPET. Therefore, all patients were examined by simultaneously attaching the
patch-type single-lead ECG monitoring device during the CPET, and the results obtained
from the ECG patch were compared with the CPET results, which are considered the gold
standard test.

2.2. Cardio-Pulmonary Exercise Test (CPET)

The patients underwent exercise stress testing on a treadmill using a modified Bruce
protocol. The treadmill speed and slope were changed every 3 min according to the protocol
(Table S1). The exercise test was terminated according to the indications provided by the
American Heart Association (AHA) guidelines, such as ischemic ECG changes, sustained
ventricular tachycardia, a drop in systolic blood pressure >10 mmHg accompanied by any
other evidence of ischemia, moderate-to-severe angina, central nervous system symptoms
(e.g., dizziness, near syncope), signs of poor perfusion (cyanosis or pallor), and the subject’s
request to stop [19].

A respiratory gas analyzer (Quark PFT; COSMED Co., Rome, Italy), automatic blood
pressure and pulse monitor (TANGO M2; SunTech Medical Inc., Morrisville, NC, USA),
and treadmill with an ECG monitoring system (T2100-ST2; GE-Marquette Medical Systems,
Milwaukee, MI, USA) were used during the CPET.

2.3. Measuring Device (modiCARE-MC100, MC-100)

The MC-100 had two circular electrodes 120 mm apart. It can record a single-lead
ECG with a sampling rate of 256 Hz and send real-time ECG recording data to the research
smartphone application through Bluetooth. The electrodes were placed at a 45-degree
angle from the internipple line, which is considered the optimal location for single-lead
ECG monitoring devices [20].

This device also includes a three-axis accelerometer and three-axis gyroscope sensors,
which record at a sampling rate of 50 Hz and are utilized to calculate movement and
respiration.

2.4. Developing a Machine Learning Algorithm to Predict VO2max
2.4.1. Measurement Variables by MC-100: Heart Rate, Acceleration, and Gyroscope

The MC-100 recorded the heart rate for each heartbeat and measured the acceleration
(ACC) and gyroscope (Gyro) at a rate of 50 data points per second. However, the CPET, the
reference device, only stores respiratory gas and ECG data once every 15 s. Consequently,
we calculated the average heart rate, ACC, and Gyro data over 15 s to extract values at the
same intervals as the CPET device.

To achieve accurate heart rate monitoring during exercise, unstructured raw ECG
data were standardized into a baseline, p-wave, normal QRS complex, premature ven-
tricular contraction (PVC) QRS complex, T-wave, noise, and fibrillation probabilities on a
per-sample basis using deep learning semantic segmentation algorithms (Figure 1). By dis-
tinguishing between normal heartbeats and noise, it is possible to accurately assess whether
the situation is noise-related, allowing for the measurement of the heart rate that closely
approximates the actual heart rate, even during exercise. We utilized the DDRNet-23-slim
(Deep Dual-Resolution Networks) architecture, which is a type of semantic segmentation
algorithm [21]. This approach allowed us to accurately differentiate between different ECG
waveforms using high- and low-resolution feature maps, which are key components of the
DDRNet-23-slim model.
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Figure 1. The segmentation of the electrocardiogram (ECG). The ECG data are standardized into
baseline, P-wave, normal QRS complex, premature ventricular contraction (PVC) QRS complex,
T-wave, noise, and fibrillation probabilities per sample. ECG, electrocardiogram; QRS complex, a
combination of the Q, R, and S waves; PVC, premature ventricular contraction.

The input of this model is set to a 16-s window to capture both local and global features
of the ECG. The model parameters are optimized to reflect ECG characteristics. All the
data used for training were labeled by medical experts, indicating the start and end points
of the baseline, p-wave, normal QRS complex, premature ventricular contraction (PVC)
QRS complex, T-wave, noise, and fibrillation (Figure S1).

2.4.2. Feature Selection

We extracted all possible data that could be utilized to develop machine learning
models to estimate VO2max and developed a regression model. First, the three items
measured by the MC-100 (heart rate, ACC, and Gyro) were checked for correlation with
VO2. We found that all three measurements increased as exercise intensity increased and
had a correlation coefficient of ≥0.7 (Figure S2). In addition to these, three basic items of
information–age, height, and body weight–were also included as variables.

Second, when confirming the correlation between the six variables, the ACC and
Gyro showed a high correlation (Figure S3). To avoid multicollinearity, Gyro signals were
excluded from the input variables. The removal of highly correlated features enhances the
reliability and stability of the model while minimizing the risk of overfitting. As part of the
feature selection, we conducted an ablation test to assess the performance of our model
by gradually removing the features from the five remaining items. During this process,
we obtained regression model evaluation metrics for each combination: R-squared (R2),
mean absolute error (MAE), mean squared error (MSE), and root mean square error (RMSE)
(Table 1). According to the results, we determined that heart rate, ACC, and body weight
were the most practical combinations of features. Finally, we developed regression models
that utilized only these three features.

2.4.3. Model Development

We compared seven regression models to evaluate their estimation performance: linear,
quadratic, cubic, ridge, lasso, elastic, and random forest. To evaluate and compare the
performance of the models, we considered four commonly used metrics in time-series
analysis. These metrics included R2 score, MAE, MSE, and RMSE. We found that quadratic
regression performed the best; therefore, it was used for model development (Table 2).
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Table 1. The performance of the estimation model using different features.

Number Feature R2 MAE MSE RMSE

5 HR, ACC, AGE, HEIGHT, BW 0.702 2.883 13.698 3.686

4

HR, ACC, AGE, HEIGHT 0.592 3.212 18.644 4.274
HR, ACC, AGE, BW 0.717 2.770 13.084 3.605

HR, ACC, HEIGHT, BW 0.662 3.048 15.391 3.888
HR, AGE, HEIGHT, BW 0.603 3.381 18.735 4.288

3

HR, ACC, AGE 0.688 3.112 17.452 4.131
HR, ACC, HEIGHT 0.754 2.828 14.103 3.744

HR, ACC, BW 0.794 2.622 11.773 3.416
HR, AGE, HEIGHT 0.630 3.424 21.224 4.564

HR, AGE, BW 0.674 3.189 18.553 4.255
HR, HEIGHT, BW 0.682 3.259 18.385 4.244

2

HR, ACC 0.770 2.697 13.105 3.607
HR, AGE 0.678 3.163 18.329 4.224

HR, HEIGHT 0.717 3.041 16.396 4.038
HR, BW 0.727 2.960 15.690 3.942

1 HR 0.735 2.882 15.183 3.881

R2, R-squared; MAE, mean absolute error; MSE, mean squared error; RMSE, root mean square error; HR, heart
rate; ACC, acceleration; BW, body weight.

Table 2. The performance of the estimation model using different regression models.

Linear Quadratic Cubic Ridge Lasso Elastic Random
Forest

R2 0.670 0.794 0.714 0.670 0.636 0.644 0.679
MAE 3.329 2.622 2.901 3.328 3.443 3.396 3.098
MSE 18.654 11.773 16.383 18.652 20.615 20.121 18.345

RMSE 4.270 3.416 3.925 4.269 4.44 4.396 4.241

R2, R-squared; MAE, mean absolute error; MSE, mean squared error; RMSE, root mean square error.

We extracted heart rate, ACC, and Gyro data from the MC-100 every 15 s to align with
our reference device, the CPET equipment. As a result, the total number of data is 1249,
and the 40 participants on average have 31 data per person. Data were randomly split into
training and test data in a 4:1 ratio, and the models were internally validated using the test
data. The machine-learning models were trained with fivefold cross-validation during the
training process, and the test data were used to measure the model performance.

2.4.4. Comparison between the Machine-Learning Model and Clinical Equation

To evaluate the estimation performance of the developed model, it was compared with
equations from the American College of Sports Medicine (ACSM), Fitness Registry and
Importance of Exercise National Database (FRIEND), and FRIEND equation for patients
with heart failure (HF-FRIEND), which are existing formulas for estimating VO2max. These
equations have been previously developed and are widely used. The three formulas are
as follows:

• ACSM equation VO2max = [speed (m/min) × (0.1 + fractional grade × 1.8) + 3.5];
• FRIEND equation VO2max = [speed (m/min) × (0.17 + fractional grade × 0.79) + 3.5];
• HF-FRIEND equation VO2max = [speed (m/min) × (0.17 + fractional grade × 0.32)

+ 3.5].
• The “speed” and “fractional grade” represent the values corresponding to the stage at

which the patient achieved their maximum during a CPET conducted according to the
modified Bruce protocol.
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2.5. Statistical Analysis

The baseline characteristics of the cohort were analyzed using descriptive statistics.
Continuous variables were expressed as mean ± standard deviation, while categorical vari-
ables were expressed as frequencies (percentages). Statistical significance was determined
using two-sided p-values of <0.05, with 95% confidence intervals excluding 0.

The Bland–Altman plot is an analysis based on quantifying the agreement between
two quantitative measurements by indicating the mean difference and constructing limits
of agreement. The resulting graph is an XY scatter plot, in which the Y-axis shows the
difference between the two paired measurements, and the X-axis represents the mean
of these measures. In other words, the difference between two paired measurements
was plotted against the mean of the two measurements. The plots also indicate the mean
differences between two paired measurements and the upper and lower limits of agreement.
The limits of agreement were calculated as means ± 1.96 × standard deviation (SD). If the
difference between the two methods was within the limits of agreement, it was judged
appropriate [22].

The intraclass correlation coefficient (ICC) measures the agreement between the gold
standard and tested devices. This provided an estimate of the overall concordance between
the two methods. ICC values of ≥0.90 are considered excellent, values of 0.75–0.90 are
good, values of 0.60–0.75 are moderate, and values of ≤0.60 indicate low agreement [23].

Descriptive statistics and ICC were analyzed using IBM SPSS Statistics for Windows,
Version 29.0. (Armonk, NY, USA: IBM Corp; 2022). Statistical analyses, including classifi-
cation, clustering, regression, model selection, and preprocessing, were performed using
Python 3.6.13 (Reference Manual, Scotts Valley, CA, USA: CreateSpace; 2009) with the
sci-kit-learn library (0.24.2).

3. Results
3.1. Baseline Characteristics

A total of 42 patients were enrolled in the study; however, one participant withdrew
from the study midway, and another participant had data synchronization issues that made
the analysis impossible. Finally, 40 participants were included in the analysis (Figure 2), of
whom 24 were males and 16 were females, with an average age of 66.7 years old (Table 3).
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Table 3. Baseline characteristics.

Variables Patients (N = 40)

Age, yr 66.7 ± 8.8
Male 24 (60)
Height, cm 161.4 ± 7.1
Weight, kg 64.4 ± 10.7
Smoking

Never 21 (52.5)
Ex-smoker 8 (20)
Current smoker 11 (27.5)

Comorbidity
Coronary artery disease 6 (15)
Heart failure 2 (5)
Arrhythmia 1 (2.5) *
COPD 10 (25)
CCI score 4.6 ± 2.6

PFT
FVC, L 3.0 ± 0.7

FVC, % predicted 90.7 ± 13.0
FEV1, L 2.2 ± 0.6

FEV1, % predicted 88.0 ± 18.8
DLco, % predicted 77.7 ± 17.6

6 MWT, m 442.3 ± 57.0
CPET
Maximal stage

1 1 (2.5)
2 15 (37.5)
3 22 (55)
4 2 (5)

5–7 0 (0)
Peak heart rate, bpm 133.9 ± 19.0
% predicted maximal HR 87.4 ± 12.4 **
VO2max, mL/kg/min 26.3 ± 5.0
ECOG performance status

0 37 (92.5)
1 3 (7.5)
≥2 0 (0)

Values are expressed as the mean ± standard deviation or number (%); * Atrial fibrillation; ** 80% or more of
the predicted maximal HR represents maximal exercise; (References value equations for maximal HR; 220-age);
COPD, chronic obstructive pulmonary disease; ILD, interstitial lung disease; CCI, Charlson Comorbidity Index;
PFT, pulmonary function test; FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; DLCO, carbon
monoxide lung diffusion capacity; 6 MWT, 6-min walking test; CPET, cardiopulmonary exercise test; HR, heart
rate; VO2max, maximal oxygen consumption; ECOG, Eastern Cooperative Oncology Group.

Among them, 21 (52.5%) had never smoked, and 19 (47.5%) had a smoking history. Ten
patients had chronic obstructive lung disease and six patients had coronary artery disease.
A total of 37 patients (92.5%) had Eastern Cooperative Oncology Group performance status
scores of 0.

3.2. Pulmonary Function Test (PFT) and CPET

The mean FVC (% predicted), FEV1 (% predicted), and DLCO (% predicted) were 90.7,
88.0%, and 77.7, respectively.

On the CPET, more than half (60%) of the patients reached stage 3, while only two pa-
tients advanced to stage 4. The observed maximal heart rate ratio was 87.4% of the predicted
maximal heart rate value, and the measured VO2max value was 26.3 ± 5.0 mL·kg−1·min−1.

3.3. Heart Rate Accuracy during Graded Exercise Testing

For the high performance of the VO2max estimation model, accurately measuring the
heart rate through the MC-100 is crucial. We assessed the degree of agreement of the
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heart rates obtained using the MC-100 by comparing them with those obtained during
the CPET. The Bland–Altman plots in Figure 3 illustrate the degree of agreement between
the two methods during the graded exercise testing. A lower difference between the two
measurements was observed in the warming-up stage (bias: −1.79 beats/min; limits of
agreement: −22.15 beats/min to 18.57 beats/min). As the level goes up, the heart rate
value measured through the MC-100 tends to be overestimated as the heart rate increases
beyond 100 beats/min (bias: 4.26 beats/min; limits of agreement: −25.05 beats/min to
33.56 beats/min). In stage 2, when the heart rate exceeds 150 beats/min, the MC-100 tends
to underestimate the heart rate (bias: 3.18 beats/min; limits of agreement: −22.38 beats/min
to 28.75 beats/min). Despite these tendencies, it is important to note that most participants
had heart rates within the consensus limits for both monitoring methods.
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Figure 3. The Bland–Altman plots of the heart rate measurements at each stage of the CPET. These
plots showed the degree of agreement between the two methods during graded exercise testing. The
y-axis shows the differences in heart rate values of the CPET and MC-100, while the x-axis represents
the mean heart rate values. The plots also indicate the mean differences between the estimated heart
rate and heart rate from MC-100 and the upper and lower limits of agreement. (a) Warming up,
(b) Stage 1, (c) Stage 2, and (d) Stage 3. CPET, cardiopulmonary exercise test.

3.4. VO2max Estimation

According to the Bland–Altman plot of measured and estimated VO2max, the VO2max
values obtained from the machine learning model and the FRIEND equation showed lower
differences from the reference value (bias: −0.33 mL·kg−1·min−1; limits of agreement:
−8.46 mL·kg−1·min−1 to 7.81 mL·kg−1·min−1, bias: 0.30 mL·kg−1·min−1; limits of agree-
ment: −8.74 mL·kg−1·min−1 to 9.34 mL·kg−1·min−1, respectively). The VO2max value
calculated using the ACSM equation was overestimated compared to the reference (bias:
5.89 mL·kg−1·min−1; limits of agreement, −5.37 mL·kg−1·min−1 to 17.14 mL·kg−1·min−1)
(Figure 4). Conversely, the VO2max value derived from the HF-FRIEND equation was found
to be underestimated (bias: −5.01 mL·kg−1·min−1; limits of agreement: −13.2 mL·kg−1·min−1

to 3.18 mL·kg−1·min−1).
Similarly, the machine learning model and the FRIEND equation showed a relatively

high intraclass correlation coefficient (ICC) for VO2max estimation, with values of 0.693
(95% CI, 0.417–0.838) and 0.708 (95% CI, 0.445–0.846), respectively (Table 4).
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Figure 4. The Bland–Altman plots of the VO2max estimation by estimation model and clinical
equations. (a) machine learning model, (b) ACSM equation, (c) FRIEND equation, and (d) HF-
FRIEND equation. The deviation between the estimated VO2max value and the true measured value
was minimal when using the machine learning model for estimation. VO2max, maximal oxygen
consumption.

Subgroup analysis was performed according to the maximal stage reached by the
patient during the CPET and according to sex. For analysis based on the maximum stage
the patient reached, the patients were divided, with one group reaching stages 1 or 2
and the other group reaching stages 3 or 4. The machine learning model’s estimated
VO2max value showed mean differences of 0.32 mL·kg−1·min−1 and −0.68 mL·kg−1·min−1

,
respectively, which were more accurate than other equations used for approximating actual
VO2max values. In subgroup analysis according to sex, the VO2max values obtained from
the machine learning model and the FRIEND equation showed lower differences from the
reference value. For further details, please refer to Table 4 and Figure 4.

Table 4. Measured and estimated VO2max using machine learning and equations in total and sub-
groups.

CPET ML Model ACSM FRIEND HF-FRIEND

Total
(n = 40)

VO2max *
[mL·kg−1·min−1]

26.01
(22.82–30.77)

25.37
(23.49–28.95)

35.77
(24.57–35.77)

29.22
(21.15–29.22)

23.19
(17.39–23.19)

VO2max Difference **
[mL·kg−1·min−1] - −0.33 5.89 0.30 −5.01

ICC *** - 0.693
(0.417–0.838)

0.517
(−0.126–0.780)

0.708
(0.445–0.846)

0.466
(−0.197–0.759)

Maximal
Stage
1–2

(n = 14)

VO2max
[mL·kg−1·min−1]

22.99
(19.30–25.16)

23.31
(21.71–24.21)

24.57
(24.57–24.57)

21.15
(21.15–21.15)

17.39
(17.39–17.39)

VO2max Difference
[mL·kg−1·min−1] - 0.32 1.24 −2.03 −5.68

ICC - 0.499
(−0.677–0.843)

0.301
(−1.072–0.772)

0.229
(−0.858–0.727)

0.081
(−0.242–0.493)

Maximal
stage
3–4

(n = 26)

VO2max
[mL·kg−1·min−1]

27.32
(24.93–31.81)

27.84
(25.03–29.82)

35.77
(35.77–35.77)

29.22
(29.22–29.22)

23.19
(23.19–23.19)

VO2max Difference
[mL·kg−1·min−1] - −0.68 8.39 1.56 −4.65

ICC - 0.488
(−0.145–0.771)

0.085
(−0.150–0.372)

0.209
(−0.637–0.633)

0.094
(−0.288–0.455)
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Table 4. Cont.

CPET ML Model ACSM FRIEND HF-FRIEND

Male
(n = 24)

VO2max
[mL·kg−1·min−1]

26.90
(24.15–31.41)

25.41
(23.73–28.77)

35.77
(24.57–35.77)

29.22
(21.15–2922)

23.19
(17.39–23.19)

VO2max Difference
[mL·kg−1·min−1] - −0.99 6.19 0.25 −5.32

ICC - 0.545
(−0.034–0.802)

0.365
(−0.220–0.701)

0.562
(−0.037–0.812)

0.325
(−0.231–0.678)

Female
(n = 16)

VO2max
[mL·kg−1·min−1]

23.84
(20.47–26.94)

25.14
(22.50–29.58)

35.48
(24.57–35.77)

28.99
(21.15–29.22)

23.01
(17.39–23.19)

VO2max Difference
[mL·kg−1·min−1] - 0.66 5.43 0.38 −4.55

ICC - 0.808
(0.453–0.933)

0.660
(−0.176–0.895)

0.818
(0.473–0.937)

0.593
(−0.218–0.867)

* Values are median (Q1–Q3); ** Values are differences between measured and estimated VO2max; *** Values are
ICC (95% confidence interval); VO2max, maximal oxygen consumption, CPET, cardiopulmonary exercise test; ML,
machine-learning; ACSM, American College of Sports Medicine; FRIEND, Fitness Registry and the Importance of
Exercise National Database; HF, heart failure; Q, quartile; ICC, intraclass correlation coefficient.

4. Discussion

This study aimed to develop a machine learning algorithm that can estimate VO2max
using a wearable device, a single-lead ECG patch (MC-100), in candidates for lung resection.
To assess the level of agreement, we obtained the Bland–Altman plot and intraclass correla-
tion coefficient (ICC) of our machine learning model and three other existing formulas. The
results suggest that our model and the FRIEND equation can estimate VO2max more closely
than other formulas.

Because lung resection remains the best curative option for lung cancer, a preoperative
evaluation is important. A CPET is frequently used to evaluate operability, especially in
cases where PFT results are inoperable. Recently, the advancements in wearable technology
and the growing attention to measuring physical activity have led to attempts to measure
VO2, which requires specialized equipment. Several studies have reported favorable per-
formance in measuring VO2max and VO2peak using a variety of wearable devices, including
earbud-based sensors and watches, along with various protocols [24–26]. However, as they
have predominantly targeted young and healthy adults, they have limitations in terms of
their relevance for patient populations that require an evaluation of operability.

More recently, other studies have attempted to measure the VO2max in patients rather
than in healthy individuals. Greco et al. studied 31 elderly high-risk surgical patients using
the Fitbit Inspire 2 to measure daily steps and VO2max, showing significant correlations
(R = 0.56, p = 0.001 and r = 0.58, p = 0.006, respectively) with the actual 6-min walk test
results [27]. In a study targeting patients scheduled for major elective intra-abdominal
surgery, researchers demonstrated a significant correlation between physical activity levels
measured over 7 days using the Garmin Vivosmart HR+ device and actual CPET parameters
such as VO2peak [28]. However, no studies have been conducted on patients scheduled for
lung resection.

In this study, we developed a machine learning algorithm that can estimate VO2max
by utilizing wearable ECG monitoring equipment, MC-100, attached to lung resection
candidates during exercise. The MC-100 device accurately measures the heart rate by
minimizing the HR noise using its own algorithm. The Bland–Altman plots in Figure 3
show that the heart rates measured by the MC-100 device tended to be lower than those
measured by the CPET equipment. However, upon reviewing the actual ECG data, it is
clear that the measurements from the MC-100 device are more approximate to the real heart
rate (Figure 5). In addition to the closer heart rate, by incorporating acceleration and weight
data into the model, it was possible to estimate VO2max, which closely approximated the
actual measured values.
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Figure 5. Comparisons of heart rate measurement between an electrocardiogram (ECG) and a
single-lead ECG monitoring device during a CPET test in two patients. The results showed that
the single-lead ECG monitoring device (MC-100) demonstrated significantly less fluctuation than
the conventional ECG. In addition, when examining the 12-lead ECG (yellow section), it was found
that the HR values had substantial discrepancies. However, the single ECG patch showed more
approximate HR measurements and performed better in situations with high noise levels. W, warming
up stage; S1, stage1; S2, stage2; S3, stage3; HR, heart rate; CPET, cardiopulmonary exercise test.

VO2max is a reliable indicator of aerobic capacity and cardiorespiratory function.
Low levels of cardiorespiratory fitness in cancer patients have been associated with high
symptom burden, morbidity, and mortality. However, the limitations of the CPET, which
requires specialized equipment and skilled personnel, have restricted its use in clinical
practice. Researchers have developed a formula for estimating VO2max using exercise
test characteristics. Our study utilized a machine learning model based on information
collected using a single-lead ECG monitoring device to estimate VO2max. The model
showed a moderate level of agreement, as indicated by an ICC value of 0.693. Compared to
other equations, this model demonstrated greater consistency when applied to different
maximal stage levels and sexes. When subgroup analysis was performed based on the
maximal stage reached by the patients, these strengths became even more apparent. The
machine learning model using the ECG monitoring device obtained personalized VO2max
values, while the equation-derived values remained the same for all patients who reached
the same maximal stage. Therefore, when a CPET is not feasible, our model offers a
potential solution for achieving higher accuracy in estimating VO2max.

The strength of this study is that it focused on patients scheduled to undergo lung
resection, unlike previous studies that primarily targeted healthy young adults. During
the CPET, the two patients were compared based on their measured and estimated VO2max
values (Figure 6). Figure 6a depicts a patient with poor pulmonary function (FVC, 63% pre-
dicted; FEV1, 61% predicted) but good exercise function (VO2max, 24.82 mL·kg−1·min−1),
while Figure 6b shows a patient with normal pulmonary function (FVC, 98% predicted;
FEV1, 101% predicted) and good exercise function (VO2max, 34.04 mL·kg−1·min−1). Regard-
less of the patient’s baseline lung function status, a machine learning model utilizing data
collected from a single-lead ECG monitoring device could estimate the VO2max value, with
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a trend of VO2 values very similar to that of the CPET. In assessing the suitability of surgery,
relying solely on lung function test results may lead patients with low lung function to opt
for an alternative treatment method. However, using the CPET, we determined that the
patient could withstand the surgical procedure. When the CPET is not feasible for a patient,
a machine learning model that incorporates data from a single-lead ECG patch obtained
through an exercise test can provide a VO2max value comparable to that of the CPET.
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Figure 6. Comparisons between measured VO2max and estimated VO2max using machine learning
model. (a) Patient No.15 has poor pulmonary function but good exercise function, while (b) Patient
No.26 has normal pulmonary function and good exercise function. These graphs show that the
machine learning model was able to estimate the VO2max value in a manner closely resembling
the VO2 trend seen in the CPET, regardless of the patient’s initial lung function status. ML model,
machine learning model; VO2max, maximal oxygen consumption; VO2, oxygen consumption; CPET,
cardiopulmonary exercise test.

Although the CPET progressed to stage 7 according to the maximal incremental
treadmill protocols, most patients only reached stage 2 or 3. Additionally, some of them
failed to establish a substantial plateau at the maximum point of VO2, which, to make a
strict distinction, signifies VO2peak rather than VO2max. However, it should be considered
that patients with chronic lung disease and elderly patients were included in this study.
Due to their difficulty in maintaining a sufficient plateau, obtaining “the strict” VO2max is
very challenging. Furthermore, the maximum heart rate exceeded 80% of the predicted
maximum heart rate, indicating that maximal exercise was achieved. From this perspective,
we concluded that this can be practically considered as the VO2max.

While this study was conducted with a prospective design, it has the limitation of
a small sample size of 40. Furthermore, because the study was conducted at a single
institution, external validation was not performed. However, this study included patients
with a wide range of ages and underlying diseases. Further studies are required for the
practical utilization of this device and machine learning models in clinical settings.

5. Conclusions

This study aimed to develop a machine learning algorithm to accurately estimate
VO2max using a single-lead ECG patch in candidates for lung resection. After exploring
multiple combinations, a machine learning model was developed utilizing heart rate,
acceleration, and body weight. The VO2max values from the developed model and the
FRIEND equation showed lower differences from the reference value. In particular, the
developed model, with its strength in more approximate heart rate measurement, provides
a closer estimation of VO2max values measured using a CPET regardless of maximal stage
level or sex than existing equations. In situations where a CPET is not feasible, this model
may be a promising tool for estimating VO2max with greater accuracy and assessing the
cardiopulmonary reserve in lung resection candidates.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/healthcare11212863/s1, Figure S1: The process of raw
electrocardiogram (ECG) data to measure heart rate. (a) Unstructured ECG raw data are processed
through deep-learning semantic segmentation algorithms. (b) The semantic segmentation algorithm
accurately differentiates between different ECG waveforms using high-resolution and low-resolution
feature maps; Figure S2: (a) Changes in heart rate, acceleration, and gyroscope during stages of CPET.
(b) Correlation between VO2 and heart rate, acceleration, and gyroscope; Figure S3: Correlation
matrix heatmap displaying the Pearson correlation coefficient values for each feature; Table S1:
Modified Bruce protocol.
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