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Abstract: Inflammatory diseases involve numerous disorders and medical conditions defined by
an insufficient level of self-tolerance. These diseases evolve over the course of a multi-step process
through which environmental variables play a crucial role in the emergence of aberrant innate
and adaptive immunological responses. According to experimental data accumulated over the
past decade, neutrophils play a significant role as effector cells in innate immunity. However,
neutrophils are also involved in the progression of numerous diseases through participation in the
onset and maintenance of immune-mediated dysregulation by releasing neutrophil-derived molecules
and forming neutrophil extracellular traps, ultimately causing destruction of tissues. Additionally,
neutrophils have a wide variety of functional heterogeneity with adverse effects on inflammatory
diseases. However, the complicated role of neutrophil biology and its heterogeneity in inflammatory
diseases remains unclear. Moreover, neutrophils are considered an intriguing target of interventional
therapies due to their multifaceted role in a number of diseases. Several approaches have been
developed to therapeutically target neutrophils, involving strategies to improve neutrophil function,
with various compounds and inhibitors currently undergoing clinical trials, although challenges and
contradictions in the field persist. This review outlines the current literature on roles of neutrophils,
neutrophil-derived molecules, and neutrophil heterogeneity in the pathogenesis of autoimmune and
inflammatory diseases with potential future therapeutic strategies.

Keywords: neutrophil; antimicrobial peptides; neutrophil heterogeneity; autoimmunity; immune
responses; inflammatory disease

1. Introduction

The ability of organisms to defend themselves against external pathogens and to repair
tissue injury brought on by infection is vital for them to survive. Inflammatory processes
can contribute to the regulation of the origin, development, and outcomes of autoimmune
and autoinflammatory diseases [1]. Moreover, inflammatory responses can damage host
tissues and result in organ failure in a wide range of disorders. These inflammatory diseases
are characterized by inflammation, which has been identified as the leading cause of death
worldwide [2].

Innate immune responses serve as the initial line of defense for the host against
pathogens. These responses can help detect and eliminate infected cells as well as coordinate
and activate the development of adaptive immunity [3,4]. Neutrophils play a crucial
role as effector cells in the innate immune system. Neutrophils are considered a type of
polymorphonuclear (PMN) leukocyte. They are emerging as highly specialized cells that
are capable of carrying out a number of immune defense-related functions [5]. Neutrophils
constitute the most prevalent leukocytes in circulation and possess a short lifespan. If
microbial infections are detected, these cells immediately act to trap and eliminate invasive
pathogens [6]. In addition, neutrophils interact in complicated, bidirectional ways with
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certain other immune cells once they reach inflamed tissues, affecting both innate and
adaptive immune responses [7].

Furthermore, neutrophils are naturally the first to respond to acute inflammation and
aid in its resolution. Neutrophils have additionally been proven to be important in chronic
inflammation throughout the past few decades. Neutrophils are persistently recruited
towards the site of chronic inflammation. They help drive inflammatory processes by
releasing inflammatory factors and several cytokines that can regulate inflammation and
activate other types of immune cells [8,9]. Numerous pathological conditions such as cancer,
neurological, metabolic, and autoimmune disorders are caused by neutrophil-mediated
inflammation [10].

Moreover, neutrophils were previously considered a homogeneous population with
conserved phenotypes and distinct roles. Current studies have shown that heterogeneous
populations of neutrophils have diverse functional phenotypes, especially in pathological
conditions of inflammation [11]. Because neutrophils serve as primary effector cells, the
severity and type of inflammatory response after severe injury may be determined by the
expression pattern of neutrophil receptors. Neutrophil heterogeneity might serve as a
helpful risk assessment tool [12,13].

Many different approaches targeting neutrophils, including strategies that use a num-
ber of different agents to improve, hinder, or restore neutrophil activity, have emerged.
However, there are still challenges and controversies that remain in the field of neutrophil
research. This review emphasizes the pathogenic role of neutrophils and their derived
molecules, elucidating their relation to various inflammatory diseases. It also outlines novel
insights into phenotypical and functional heterogeneity of neutrophils during inflammatory
diseases. In addition, some effective potential therapeutic attempts that specifically target
neutrophils are summarized.

2. Neutrophil Activation

Neutrophil activation is often a multi-step process that is advantageous for killing
pathogens. However, neutrophil activation pathways can also potentially cause tissue
damage in autoimmune and inflammatory diseases. Some stimulants, including pathogen
chemoattractants (fMLP) and bacterial lipopolysaccharide (LPS), are important for acti-
vating neutrophils [14,15]. These stimulants can adhere to neutrophils and activate their
receptors to enhance responsiveness of those cells to subsequent stimuli. There are several
different kinds of receptors that are expressed on neutrophils, including G-protein-coupled
receptors (GPCRs), Fc-receptors, adhesion molecules/receptors such as integrins and se-
lectins/selectin ligands, different cytokine receptors, and innate immune receptors such as
C-type lectins and toll-like receptors (TLRs). Activation of such receptors can cause addi-
tional reactions such as chemotactic migration or the release of chemokines and cytokines
as well as multiple cellular activation and eradication processes such as phagocytosis,
generation of reactive oxygen species (ROS), exocytosis of intracellular granules, and the
releasing of neutrophil extracellular traps (NETs).

GPCRs like formyl peptide receptors (FPR1, FPR2) have been recognized as bacterial
products and mitochondrial peptides via the MAPK/ERK pathway [16], leukotriene B4
(LTB4), platelet-activating factor receptors (PAFRs), complement receptors (C3aR, C5aR1),
CXC chemokine receptors (CXCR1, CXCR2, CXCR3, CXCR4), and, to a smaller extent,
CC chemokine receptors (CCR1, CCR2, CCR3, CCR5, ACKRs, CCRL2). These GPCRs are
capable of enhancing neutrophil responses to further activation. Furthermore, the chemo-
tactic migratory activity of neutrophils is substantially triggered by these receptors [17–19].
Several Fc-receptors that are expressed by neutrophils (Fcγ, Fcε, Fcα) have a role in the
identification of immunoglobulin (Ig)-opsonized pathogens. They are also involved in
immune-mediated inflammatory conditions. Low-affinity Fcγ-receptors are among the
most significant Fc-receptors of neutrophils [20,21]. Additionally, neutrophil activation of-
ten happens when they bind to extracellular matrix proteins or other cells through integrin
or selectin adhesion receptors. Neutrophils can adhere firmly when integrins interact with
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their specific ligands, such as intercellular adhesion molecules (ICAMs) on endothelial cells.
Several kinases, including Src-family kinases, phosphoinositide 3-kinase (PI3K), tyrosine
kinase (SYK), and p38 mitogen-activated protein kinase (MAPK), are activated by β2 inte-
grin ligation and selectin–selectin ligand interaction [22–25]. The activation of these kinases
is important for neutrophil functions. Numerous cytokine receptors are also expressed by
neutrophils, including tumor necrosis factor (TNF) receptors, granulocyte-colony stimu-
lating factor (G-CSF), and granulocyte macrophage-colony stimulating factor (GM-CSF)
receptors, as well as different interleukins (ILs) and interferons (IFN) receptors [22]. These
receptors control a variety of neutrophil functions through intercellular communication.

Numerous innate immune receptors, also known as pattern recognition receptors
(PRRs), are expressed on neutrophils. They have a direct role in the identification of
microbes and tissue injury. According to the homology of protein domains, PRRs can be
divided into the following categories: TLRs, retinoic acid-inducible gene-I (RIG-I)-like
receptors (RLRs), nucleotide-oligomerization domain (NOD)-like receptors (NLRs) and
C-type lectin receptors (CLRs) [22,26,27]. In neutrophils, activation of these receptors
is possible through a variety of signal transduction mechanisms. Neutrophil PRRs are
important regulators of host immunological responses.

Consequently, these neutrophils’ stimulated receptors can detect microbes as well
as an inflammatory environment. Understanding these neutrophil receptors and related
signaling pathways that regulate neutrophil function is necessary for the development of
therapies that can prevent host tissues from being harmed by neutrophils.

3. Structure and Functions of Neutrophils

Neutrophils are composed of different granule types: (1) primary granules, commonly
referred to as azurophilic granules; (2) secondary granules, also called specific granules;
(3) tertiary granules, also known as gelatinase granules; and (4) secretory granules. Primary
granules contain most mediators, including elastase, MPO, proteinase 3, Cat-G, azuro-
cidin, and defensins. Secondary granules are the storage site of lactoferrin, cathelicidin,
neutrophil gelatinase-associated lipocalin (NGAL), and collagenase. Tertiary granules
comprise matrix metalloproteases (MMPs). Secretory granules contain plasma proteins
and cationic antimicrobial protein 37 (CAM37). Activated neutrophils can also release
other effector molecules such as reactive oxygen species (ROS), LTB4, calprotectin, peptidyl
arginine deiminase (PAD), NETs, and various types of cytokines and chemokines, as shown
in Figure 1.

Neutrophils are multifaceted cells with a wide range of distinct functions. Appropriate
neutrophil recruitment is required for modulation and resolution of inflammation, tissue
repair, wound healing, elimination of microorganisms, and restoration of homeostasis, as
depicted in Figure 2. These various roles that neutrophils play will be discussed below.

3.1. Chemotaxis

Neutrophils can identify inflammatory signs and move in the direction of infected
sites [28]. For this efficient response, they can recognize extracellular chemical gradients and
migrate toward higher concentrations through a process known as chemotaxis. Chemoat-
tractants are a set of molecular guidance cues with diverse chemical compositions. They
are responsible for orchestrating this targeted neutrophil recruitment. In humans, these
chemoattractant molecules can be classified into four molecular families: formyl peptides,
chemokines, anaphylatoxins, and chemotactic lipids [29]. Neutrophil chemoattractants
work by interacting with heptahelical GPCRs expressed on cell surfaces. The Rho family of
GTPases play a major role in controlling chemotactic response. Moreover, emerging data
indicate that the atypical chemoattractant receptor (ACKR), another receptor that does not
bind to G proteins, might also play a significant role in regulating the migratory ability and
functional responses of neutrophils. The expression of chemoattractant receptors is reliant
on the degree of neutrophil maturation state and activation, with a crucial modulatory
function for an inflammatory condition [17].
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Figure 1. Granule contents and other molecules secreted by neutrophils. This figure shows effec-
tive mediators derived from neutrophil granules and other effector molecules they release. MPO:
myeloperoxidase. NGAL: neutrophil gelatinase-associated lipocalin. CAP: cationic antimicrobial
protein. LTB4: leukotriene B4. PAD: peptidyl arginine deiminases.

Figure 2. Multifaceted function of neutrophils. Neutrophils eradicate intracellular pathogens through
their chemotaxis activity and the release of antimicrobial peptides and ROS. By efficiently engulfing
and removing apoptotic neutrophils via the process of phagocytosis, neutrophils can facilitate the
resolution of inflammation. Neutrophils can also promote immune responses via complex interactions
with other immune cells and use various mechanisms to control activities of other immune cells.
GPCRs: G protein-coupled receptors. ACKRs: atypical chemokine receptors. ROS: reactive oxygen
species. NETs: neutrophil extracellular traps. HMGB1: high-mobility group box 1. BAFF: B-cell
activating factor. APRIL: a proliferation-inducing ligand. PR3: proteinase 3.
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3.2. Killing of Microbes

Neutrophils can phagocytose microorganisms at sites of infection. Throughout this
process, both primary and secondary granules combine well with phagosomes and produce
proteins and antimicrobial peptides such as myeloperoxidase (MPO), neutrophil elastase
(NE), cathepsin G (Cat-G), cathelicidin, alpha-defensins, and many others. During the same
periods, ROS are generated via nicotinamide adenine dinucleotide-phosphate (NADPH).
NETs are produced by activated neutrophils in response to specific stimuli. NETs resemble
a net-like network made up of cell-free DNA, neutrophil granule proteins, and histones.
NETs are recognized as a pathogen control strategy identified only a few years ago [30]. All
of these microbicidal molecules are secreted by neutrophils to create a highly dangerous en-
vironment that seems to be necessary for effective microbial killing and destruction. Several
of these microbicidal molecules can aid in the development of infection by being cytotoxic
to host tissues [31,32]. Thus, it is expected that the host uses a variety of mechanisms to
restrict or stop them from harming host cells and causing undesired inflammation.

3.3. Resolution of Inflammation

Neutrophils have a short lifespan. They are limited by apoptosis. Apoptotic neu-
trophils are functionally inactive due to a programmed shutdown and disabling of their
signaling pathways. However, they can also retain cell-surface receptors that allow them to
be recognized and phagocytosed by macrophages and other phagocytic cells. By removing
apoptotic neutrophils from inflammatory areas, it is possible to avoid tissue damage that
might otherwise occur due to the discharge of cytotoxic compounds into surrounding
tissues that might have died due to necrosis. The efficient death of neutrophils and the
secure evacuation of apoptotic neutrophils through phagocytic cells are crucial for the
reduction in inflammation [9,33]. Under inflammatory conditions, disruption of neutrophil
apoptosis can result in prolonged survival of neutrophils in damaged tissue and prolong
the secretion of neutrophil-derived immunomodulatory cytokines, cytotoxic chemicals, and
chemokines, which may lead to prolonged inflammation [34,35]. Failure in the removal of
apoptotic neutrophils could also result in the generation of autoantibodies, because these
cells express autoantigens upon their surface [36].

3.4. Neutrophil Network with Other Immune Cells

Neutrophils not only participate in the eradication of microbes, but also promote
immune reactions to intracellular pathogens through intricate interactions with other
immune cells. For instance, neutrophils can release chemokines (such as CCL3, CCL4,
CCL5, and CCL20) and alarmins, including α-defensins, cathelicidins, and high-mobility
group box-1 (HMGB1) proteins that are chemotactic for dendritic cells (DCs). These
chemokines and alarmins are required for efficient DC recruitment to infected sites. NETs
can promote plasmacytoid (p) DCs to release inflammatory cytokines [37]. Similarly,
interactions between macrophages and neutrophils play a crucial role in both the beginning
and resolving stages of an inflammatory reaction. Tissue-resident macrophages can secrete
some chemoattractants like CXCL1, CXCL2, CCL2, and IL-1α that are required for the
migration of activated neutrophils toward the inflammatory site. This process can increase
the lifespan of neutrophils by secreting G-CSF, GM-CSF, and TNF-α [38]. When neutrophils
arrive at the site of inflammation, they can activate the immune system by recruiting
monocytes and releasing proteins such as LL-37, proteinase 3 (PR3), azurocidin, defensins,
and Cat-G [39,40]. Defensins, azurocidin, and other antimicrobial peptides can boost
antimicrobial activities of macrophages by enhancing their capacity to phagocytose and
generate cytokines (TNF-α and IFN-γ) [41,42].

Cytokines BAFF (B-cell activating factor) and APRIL (a proliferation-inducing ligand)
are generated by neutrophils in great quantities. These cytokines are essential for B-cell sur-
vival, development, and differentiation. They are elevated in inflammatory diseases [43,44].
Furthermore, the function of several T-cell subsets can be positively or negatively modu-
lated by neutrophils. In both humans and animals, activated neutrophils encourage T-cell



Cells 2023, 12, 2621 6 of 34

activation, multiplication, and differentiation into effector CD8+ T-cells, and T-helper cell
subsets (Th1, Th17) could promote adaptive responses at the inflammatory site [45–47]. Ac-
cording to previous studies, granule peptides of neutrophils such as cathelicidin (mCRAMP
in mice, LL-37 in humans) can exert immunomodulatory actions on T cells and modulate
Th1 and Th17 differentiation [48]. At the site of inflammation, neutrophils can also stimu-
late natural killer (NK) cells. Cat-G, defensins, elastase, and lactoferrin (LTF) are implicated
in the augmentation of cytotoxic activity of human NK cells. The survival rate of human
neutrophils can be improved by NK-derived substances including GM-CSF and IFN-γ [49].
These findings suggest that human neutrophils have a variety of mechanisms through
which they can control the activity of NK cells.

Crosstalk between neutrophils and other immune cells as well as significant chemical
signals can affect the development and remission of inflammation. However, further
research on associations of neutrophils with other immune cells in relation to inflammatory
diseases is required.

4. Neutrophils in Infection

Neutrophils are essential mediators that can serve in the initial defense against invasive
pathogens like bacteria and viruses. Next, we will explain the effector role of neutrophils in
bacterial and viral infections.

4.1. Bacterial Infection

Neutrophils are required as a key component of the innate response to bacterial
infection. Upon bacterial infection, neutrophils will exit the bloodstream and move to the
inflammatory area to fight against bacterial infections. When an infection is caused by
Listeria monocytogenes, a Gram-positive intracellular pathogen, neutrophils can move from
the bone marrow to the infectious site. They employ unique bacterial-sensing mechanisms
at this site that can result in phagocytosis and generation of bactericidal substances [50].
Liu et al. [51] have investigated formyl peptide receptors related to chemoattractant GPCRs
which are crucial for the quick migration of neutrophils in Listeria-infected livers of mice for
successful clearance of infectious microbes. LTB4, another chemoattractant for neutrophils,
is essential for neutrophil colonization. A recent publication has shown that preincubation
of human neutrophils with the Gram-negative intracellular bacteria Salmonella typhimurium
can promote neutrophil colonization [52]. This bacterium has been used to stimulate
LTB4 production caused by a bacterial chemoattractant fMLP, which is important for
the eradication of pathogens instantaneously. However, certain bacterial infections also
generate molecules that can inhibit neutrophil recruitment. Extracellular bacteria like
Streptococcus pyogenes (S. pyogenes) and Streptococcus pneumoniae (S. pneumoniae) use a
significantly different strategy to prevent neutrophil recruitment. For example, streptolysin
is an effective cytolytic toxin produced by S. pyogenes. This streptolysin is essential for
inhibiting neutrophil recruitment in the initial stages of S. pyogenes infection, as observed
in studies using zebrafish [53]. Similarly, zinc metalloproteinase produced by S. pneumoniae
can cleave P-selectin glycoprotein 1 (PSGL-1), preventing neutrophil extravasation in its first
stages [54]. Moreover, Staphylococcus aureus is an intracellular bacterium with chemotaxis
inhibitory protein that has been employed to prevent neutrophil activation [53,55–57].

Additionally, phagocytosis, a mechanism that occurs in neutrophils, allows them to
eliminate bacterial infections. There are multiple examples of bacteria that can secrete
different compounds to either increase or decrease the phagocytic activity of neutrophils.
For instance, Neisseria gonorrhoeae can alter mitochondrial depolarization and caspase
activation to regulate phagocytosis in human neutrophils [58]. In contrast, S. pneumoniae
capsules can reduce bacterial opsonization and inhibit effective recognition by complement
receptors, Fcγ receptors, and nonopsonic receptors. Due to this inhibition, neutrophils are
unable to phagocytose the bacterium, which allows S. pneumoniae to cause diseases [59].
Other bacteria including Mycobacterium tuberculosis, Neisseria meningitidis, Haemophilus
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influenzae, Pseudomonas aeruginosa, and Escherichia coli can also inhibit the phagocytic
activity of neutrophils through different mechanisms [57,60–62].

Moreover, neutrophil apoptosis is a pro-resolution process that can reduce the sever-
ity of tissue damage and inflammation. However, accelerating or delaying neutrophil
apoptosis might have several negative consequences. Some bacterial pathogens such as
Pseudomonas aeruginosa can release a pigment known as pyocyanin and exotoxin A that can
cause apoptosis of neutrophils [63]. Other examples of bacteria that can persuade apoptosis
of neutrophils following phagocytosis include Salmonella typhimurium, Escherichia coli, and
Staphylococcus aureus [64–67]. Numerous bacteria have been proven to cause neutrophil
apoptosis, although fewer bacteria have been found to be able to prevent this death process.
For example, Chlamydia psittaci, Francisella tularensis, and Anaplasma phagocytophilum are
other intracellular bacterial pathogens that can delay neutrophil apoptosis via signaling
pathways and anti-apoptotic proteins.

NETs are produced by neutrophils through a process known as NETosis, which traps a
variety of bacteria. The immunological response to bacterial infections is highly dependent
on NETs. NETs can inhibit the growth of bacteria including Shigella flexneri, Escherichia
coli, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella sonnei, Klebsiella pneumoniae,
Salmonella enteritidis, Staphylococcus albus, Pseudomonas aeruginosa, Propionibacterium, and
Staphylococcus aureus and kill them [68,69].

Overall, the communication between neutrophils and bacteria is dynamic and complex.
These are only a few examples. There are undoubtedly many more bacteria that can affect
neutrophils. The role of neutrophils during various other bacterial infections is still largely
unexplored. Understanding the role of neutrophils in the defense against bacterial infection
can be extremely helpful in the development of new therapies for bacterial infection.

4.2. Viral Infection

Neutrophils have a variety of functions in severe viral infections. They can limit viral
replication and transmission by phagocytosis, respiratory burst, degranulation, cytokine
production, antimicrobial peptides, formation of NETs, and activation of the adaptive
response. However, excessive activation of neutrophils can harm the tissue with negative
effects. Many viruses such as herpes simplex virus (HSV) [70], respiratory syncytial virus
(RSV) [71], influenza A virus (IAV) [72], and human immunodeficiency virus (HIV) [73]
can activate neutrophils via PRRs to release proinflammatory cytokines, chemokines,
ROS, and granular enzymes. Furthermore, Cloke et al. [74] have revealed that certain
neutrophil phenotypes like low-density granulocytes (LDGs) are associated with certain
viral infections. In HIV-positive patients, LDGs are presumably activated neutrophils that
are primed to degranulate. Contrarily, hepatitis C virus (HCV) can decrease neutrophil
phagocytosis in both cirrhotic and non-cirrhotic individuals, indicating that neutrophil
dysfunction is associated with HCV replication [75]. Research on mice infected with IAV
has revealed that blocking C5a can reduce neutrophil recruitment to lungs and tissue
damage [76].

It has been demonstrated that many viruses can directly or indirectly promote or
prevent neutrophil apoptosis. For instance, the influenza virus can accelerate neutrophil
apoptosis. Studies have demonstrated that exposure to the influenza virus might cause neu-
trophils to upregulate pro-apoptotic factors like Fas and TNF-related apoptosis-inducing
ligands (TRAIL). As a result, caspase-8 and caspase-3 are activated, starting the apoptotic
cascade to help eliminate infected cells [77]. Several viruses such as HCV, HIV, and Simian
immunodeficiency virus (SIV) have been found to increase neutrophil apoptosis. These
viruses can cause neutrophil apoptosis by a variety of complex mechanisms/pathways,
including the secretion of ROS and cytokines [78–80]. When these viruses cause enhanced
apoptosis of neutrophils, they can induce neutropenia, potentially weakening the immune
response to infection [81,82]. In contrast, delaying neutrophil apoptosis has the potential
to worsen tissue damage and accelerate viral clearance. Therefore, the host may benefit
from suppression of neutrophil apoptosis. For instance, it has been revealed that human
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cytomegalovirus (HCMV) can inhibit neutrophil apoptosis and cause production of a
highly bioactive secretome (TNF-α, IL-6, IL-8, MIP-1α, IL-13, and IL-10) that can promote
neutrophil survival and trigger the chemotaxis of monocytes and their differentiation
into permissive, anti-inflammatory phenotypes [83]. In addition, one research paper has
demonstrated that RSV can also extend the longevity of human neutrophils by preventing
or delaying apoptosis [84].

Likewise, NETs can trap and eliminate viral infections. Certain viruses, including
influenza A, HIV-1, and RSV, can cause the development of NETs. By generating ROS
species and activating TLRs 4, 7, or 8, these viruses can trigger NETosis, a process by which
NETs can trap and destroy viruses [85–88]. Nevertheless, acute viral infections such as
those brought by dengue virus (DV) and coronavirus-2 are known to generate dysregulated
NETs. Dysregulated NET formation has been demonstrated to be a measure of disease
severity. It plays a part in the development of infection [89].

In summary, viruses can affect neutrophil activities in a variety of ways, which can
affect immune responses and aid in the emergence of viral infections. Awareness of complex
interactions among neutrophils and viruses can offer useful insights for the development
of efficient therapies against viral diseases.

5. Role of Neutrophils in Inflammatory Diseases

Inflammatory diseases are defined by chronic or persistent inflammatory responses
that can cause tissue injury and malfunction. Neutrophils, their derived molecules, and
neutrophil heterogeneity all have an effective role in the emergence and perpetuation
of inflammatory diseases, including multiple sclerosis (MS), inflammatory bowel disease
(IBD), Behçet’s disease (BD), atopic dermatitis (AD), rheumatoid arthritis (RA), and systemic
lupus erythematosus (SLE), as shown in Figure 3 [32,90]. Our expanding knowledge of
neutrophil function in different inflammatory diseases might have a considerable impact
on the development of targeted treatments for inflammatory diseases.

5.1. Multiple Sclerosis

MS is an immune-mediated, demyelinating, chronic inflammatory, and neurodegener-
ative disease of the central nervous system (CNS). It has an unknown etiology. Although
the majority of inflammatory cells related to MS are macrophages and T lymphocytes
that aggregate inside perivascular regions and brain parenchyma, evidence shows that
neutrophils also have a negative impact on the development of MS [91,92]. Recent research
has shown that in the early phase of the disease, levels of neutrophils and other leukocytes
are much higher in MS patients [93]. During MS, neutrophils can infiltrate into the CNS
and lead to tissue destruction and inflammation, which are hallmarks of the disease [94].
Moreover, in the latest genome-wide association study (GWAS) of MS, neutrophil cytosolic
factor-4 (NCF-4) gene, encoding one of the subunits of the nicotinamide-adenine dinu-
cleotide phosphate (NADP) complex in neutrophils, was discovered as a genetic factor
susceptible to MS [95]. Moreover, neutrophils can promote immune-mediated demyeli-
nation in experimental autoimmune encephalomyelitis (EAE), a murine MS model [96].
Collectively, neutrophils exhibit a wide range of effector actions that facilitate the disease
pathogenesis.

5.1.1. Neutrophil-Derived Molecules

The pathogenesis of MS involves the production of toxic and immunoregulatory
chemicals by neutrophils. For instance, MPO can promote the activation and accumulation
of neutrophils in the CNS. MPO activity is high in MS patients [97]. Cortical demyelination
has been related to significantly increased MPO activity in a homogenate sample of the
MS cortex [98]. Antineutrophil cytoplasmic antibodies (ANCAs) are autoantibodies that
can specifically target antigens within cytoplasmic granules of neutrophils [99]. Moreover,
a higher level of NE is also secreted by neutrophils of MS patients. NE can trigger the
degradation of tissue by cleaving thrombomodulin and damaging tissue proteins, leading
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to axonal loss in acute and chronic brain lesions [96]. Cat-G has an impact on pathogenic
mechanisms of MS by degrading immunodominant myelin basic protein (MBP) epitope,
removing its binding to MHC class II, and abrogates MBP-specific T cell response [100,101].
Cathelicidin has a role in a mouse model of MS [102]. Cathelicidin can promote Th17 cell
plasticity and differentiation, which results in the production of IFN-γ producing cells in
the CNS that might cause inflammation in an EAE model [103]. Higher NGAL production
has been observed in the cerebrospinal fluid (CSF) of progressive MS patients [104]. On the
contrary, a recent research study has suggested that NGAL might be a protective molecule
in the formation of MS lesions in mouse models [105]. Neutrophils can also release other
important mediators, including MMPs and ROS. Levels of MMPs and ROS are higher in
MS patients as compared to a healthy control group. These factors all could have a role
in the disruption of the blood-brain barrier (BBB), brain extracellular matrix (ECM), and
brain tissues. They might promote the development of neuroinflammation in MS [106–
108]. According to previous research, LTB4 levels are noticeably higher in CSF of MS
patients than in controls [109]. These findings have been confirmed in an experimental
model of EAE [110]. LTB4 might play a role through interactions with its receptors BLT1.
This interaction may result in recruitment and activation of immunocompetent cells across
inflammatory lesions in addition to an elevation of autoimmune responses [109–111]. When
compared to healthy controls, MS patients have greater serum calprotectin levels, which are
linked to disease activity [112]. Neutrophil-derived cytokines such as TNF, IL-1β, IL-6, and
IL-17 are related to higher neuroinflammation in MS patients [113–115]. Neutrophils have
a powerful chemoattractant known as CXCL1. Increased expression levels of CXCL1 in the
CNS can result in enhanced recruitment of neutrophils towards the CNS. Thus, neutrophil
recruitment can promote demyelination in the EAE model [116]. In addition, increased
levels of other neutrophil-activating chemokines (CXCL1, CXCL5, and CXCL8), which are
linked to the development of inflammatory lesions, have been seen in blood samples of
MS patients and the EAE model [96]. Furthermore, higher expression levels of neutrophil
receptors such as FPR1, CXCR1, TLRs 2 and 4 in MS patients may indicate the potential
involvement of neutrophils in the etiology of this disease.

In MS patients, PAD2 and PAD4 levels are high. These enzymes cause MBP to be
citrullinated more frequently, which degrades myelin. Citrullinated MBP is a significant
player in the pathophysiology of MS [117]. The development of NETs also depends on
PAD4 [118]. NETs are more prevalent in individuals with relapsing remitting MS than
in individuals with HC or primary progressive MS. Further research has revealed that
MPO-DNA complexes are significantly greater in male patients who typically have a worse
prognosis than in female patients. The same study has raised the possibility that NETs could
harm nearby neurons and other CNS cells by having a cytotoxic effect on the BBB [119].
However, evidence is still required to further show the role of NETs in BBB breakdown in
MS.

5.1.2. Neutrophil Heterogeneity

LDGs have been found in significantly higher concentrations in MS patients [120].
According to a previous study, MS patients have considerably more CD16high cells in their
LDG fraction, which is a hallmark of mature neutrophils [121]. Furthermore, the neutrophil-
to-lymphocyte ratio (NLR) has been suggested as a biomarker for MS disease severity and
to predict possible risk of relapse [122,123]. Granulocytic myeloid-derived suppressor cells
(G-MDSCs) are significantly more prevalent in active MS patients compared to those in
remission with a strong inhibitory effect on the activation and proliferation of autologous
T cells [124]. Distinct subpopulations or mature phases of neutrophils can have different
impacts in MS.
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Figure 3. Unraveling the explosive role of neutrophils in inflammatory diseases. Neutrophils exert a
profound impact on the development and maintenance of inflammation by secreting antimicrobial
peptides and presenting diverse heterogeneity. As immunological orchestrators, neutrophils can
also release many other powerful chemicals such as cytokines, chemokines, ROS, and NETs that can
intensify the inflammatory cascade. Additionally, the variability of neutrophil subsets, each of which
has unique functional characteristics and phenotypes, contributes to the variety of symptoms and
severity seen in different inflammatory diseases. All of these factors emphasize that neutrophils can
act as vital players in disease pathogenesis. EAE: experimental autoimmune encephalomyelitis. NLR:
neutrophil-lymphocyte ratio. LDGs: low-density granulocytes. MDSCs: myeloid-derived suppressor
cells. CD: a cluster of differentiation.

Overall, the activity of neutrophils in MS is complicated and poorly understood.
Ongoing research is actively exploring the role of neutrophils, their specific mediators, and
subsets in the progression of MS. Their contribution to inflammation and tissue destruction
in the CNS emphasizes the significance of developing novel treatment approaches that can
specifically target these cells to treat MS.

5.2. Inflammatory Bowel Disease

The most common diseases among BD are Crohn’s disease (CD) and ulcerative colitis
(UC). They are mainly characterized by severe inflammation of the gastrointestinal (GI)
tract. The actual origins of IBD are unknown. Studies have identified pathogenic immune
cell networks and abnormal immune cell trafficking as crucial drivers of tissue damage and
mucosal inflammation in IBD [125]. Among various immune cells, the migrating activity of
neutrophils toward the colon mucosa is a specific feature of IBD. Neutrophils are thought
to perform dual functions in IBD. Firstly, they move toward the intestinal lining to assist in
the defense against dangerous bacteria and other infectious agents. Secondly, neutrophils
are constantly accumulating or becoming active inside the intestinal mucosa. They can
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exceed the number of scavenger cells. Prolonged and excessive activation of neutrophils
might result in chronic inflammatory processes in IBD [126,127]. However, the exact role
of neutrophils in IBD is unclear yet and appears to vary depending on the experimental
conditions.

5.2.1. Neutrophil-Derived Molecules

At the inflamed site, neutrophils produce a range of enzymes, chemicals, and inflam-
matory compounds to kill pathogens. This could also harm surrounding tissues. For
instance, IBD patients have increased serum and fecal MPO levels [128]. MPO activity
can perpetuate inflammation, which further leads to destruction of host tissues [128,129].
Furthermore, NE has higher concentrations inside the intestinal mucosa of UC patients than
CD patients and healthy controls [130,131]. NE may hinder mucosal healing by reducing
the proliferation of epithelial cells. Cat-G is upregulated in UC patients, which implies
that only UC patients, not normal individuals, can discharge Cat-G from the colon wall
to the lumen. Cat-G can also activate the PAR4 receptor. Overexpression of Cat-G in UC
patients is related to higher PAR4 expression. We can assume that Cat-G and PAR4 play
key roles in the initiation and/or progression of relapses in UC. Additionally, Cat-G has
the ability to raise levels of angiotensin II in inflamed areas. This in turn causes death
of epithelial cells and disrupts barrier functions of the epithelium [132–134]. α-defensins
is expressed in epithelial cells of the mucosa of active IBD patients. Patients with UC
have elevated concentrations of plasma α-defensins [135]. Fecal LTF level is considerably
greater in an active state of IBD than in an inactive state of IBD. By using this protein, it is
reliable to distinguish between inflammatory and non-inflammatory IBD [136]. Children
with CD and UC have higher serum levels of cathelicidin [137]. Patients with IBD have
higher colonic expression levels of cathelicidin in their intestinal mucosa [138,139]. It has
been hypothesized that increased cathelicidin production in the inflamed mucosa of IBD
might promote antibacterial and anti-LPS activities [140]. It can protect tissues against
microbial invasions and excessive inflammatory responses. Another possible biomarker
for IBD is fecal NGAL. Patients with active CD and UC have considerably higher fecal
NGAL levels than healthy controls and inactive patients of UC and CD [141]. In addition to
being a significant source of MMP-9, neutrophils can contribute to epithelial injury in UC
patients [142]. In injured intestines of IBD patients as well as in animals with DSS-induced
colitis, MMP-8 and MMP-9 levels are elevated [143]. Cells from inflamed IBD epithelium
show enhanced proteolytic activity of MMPs [144–146]. When neutrophils are activated,
they produce excessive ROS, which impairs intestinal homeostasis in IBD [147]. According
to previous studies, ROS can increase expression levels of genes related to both adaptive
and innate immune responses in the GI tract [148,149]. It has been reported that LTB4 is
upregulated in patients with IBD [150]. Neutrophil accumulations are found with LTB4 at
sites of cell death in lesional tissues [151,152]. Fecal calprotectin is an indicator of disease
activity, especially in UC patients [153]. Moreover, there are other factors that can influence
neutrophil activation and infiltration into IBD-related inflamed mucosa. For example,
elevated expression of chemokines (CXCL-1, -8, and -10) and cytokines (IL-6, IL-8, IL-1β,
TNF-α, G-CSF, GM-CSF, and IL-17) released by neutrophils and other immune cells (intesti-
nal epithelial cells, macrophages) throughout intestinal inflammation is a significant factor
in the infiltration, migration, and activation of neutrophils into mucosal surfaces [154–158].

Compared to CD patients and the control group, the inflamed mucosa of UC patients
shows a considerably higher level of PAD4 expression [159]. NETs are essential as a defense
mechanism when high quantities of viruses, bacteria, and fungi are present in the intestinal
mucosa interphase. On the contrary, NETs might be involved in IBD-related problems and
intestinal inflammation. Moreover, NET release is seen in UC [160], supporting the idea that
NETs play a role in maintaining mucosal inflammation throughout this disease [160,161].
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5.2.2. Neutrophil Heterogeneity

NLR might be a promising IBD biomarker. NLR values are significantly higher in
those with active IBD than in those with inactive IBD and healthy controls [162]. Helicobacter
hepaticus (Hh)-induced colitis is a model of IBD in which G-MDSCs promote inflammation
by suppressing T-cell activity and modulating innate immune responses. G-MDSCs are
accumulated in the spleen and colon samples of the Hh-infected IBD model. Therefore,
it is considered that G-MDSCs have a pro-inflammatory role in colitis [163]. CD177+
neutrophils are responsible for negatively regulating the development of IBD. CD177+ cells
produce more IL-22 with increased bactericidal activity compared with CD177− subset,
suggesting a potential protective function in IBD. Accordingly, the intestinal barrier is
impaired in colitis mice lacking CD177+ neutrophils, and the development of colitis is
accelerated. Upregulation of CD177+ neutrophils could be beneficial for the management
of IBD [164].

5.3. Behçet’s Disease

BD is known as an inflammatory disease with numerous manifestations. It can be
recognized by the involvement of the vascular, articular, neurologic, and gastrointestinal
systems as well as ocular, skin, genital, and oral ulcers [165]. Although the exact etiology of
BD is unidentified, immunological irregularities play significant roles in the pathogenesis.
It is well known that the pathogenesis of BD is associated with increased neutrophil influx
and disturbed self-tolerance [166,167]. Neutrophils usually participate in perivascular
infiltration in lesions and show significant intrinsic activity in BD patients. Chemotaxis and
phagocytosis can both be increased by hyperactive neutrophils [168,169]. These heightened
neutrophil functions contribute to tissue damage and immunological alterations observed
in the disease. Patients with active BD have higher levels of neutrophil activation mark-
ers including CD64 [170]. Furthermore, neutrophil inflammation is a major mediator of
thrombosis in BD. There are also reports of circulating neutrophil impairments in BD due
to activation-induced cell death (AICD). A histological study of BD lesions has revealed
arterial and venous infiltrates of neutrophils, indicating that neutrophils are specifically
implicated in BD lesions [171]. It has been suggested that BD can be categorized as neu-
trophilic vasculitis [172,173]. Overall, neutrophils are mediators of inflammation that occur
in BD patients.

5.3.1. Neutrophil-Derived Molecules

Neutrophil-mediated compounds can aid in the inflammation and destruction of
tissues in BD. Le Joncour et al. [174] have stated that MPO-DNA complexes are substantially
more prevalent in the serum of BD patients. In addition, the generation of thrombin
in BD plasma is markedly elevated. Such elevation is associated with concentrations
of MPO-DNA complexes. Furthermore, there are noticeably higher amounts of NE in
plasma [175] and saliva [176] of active BD compared to those in inactive and healthy
controls. Studies have shown that ANCAs are correlated with vascular involvement in BD
patients [177,178]. Regarding defensins, it is known that neutrophil-derived α-defensins
have anti-inflammatory action by suppressing macrophage mRNA [179]. α-defensins
have been found in the saliva of active BD patients with oral ulcers [180]. In addition,
calprotectin and LTF as two fecal biomarkers can be used to identify intestinal inflammation.
BD patients with intestinal lesions have significantly higher levels of fecal calprotectin
and fecal LTF than patients without lesions [181]. LL-37 is known as an inflammatory
and anti-inflammatory peptide [182,183]. Mumcu et al. [184] have shown that salivary
levels of LL-37 are positively correlated with oral ulcers in BD patients. LL-37 combination
with healthy plasma extracellular vesicles can upregulate proinflammatory cytokines such
as IL-1 beta and IL-6. In BD, LL-37 circulates, binds to plasma extracellular vesicles,
and causes severe BD symptoms [185]. NGAL has inflammatory properties. It might be
employed as a diagnostic marker in ocular BD. NGAL values are much higher in ocular
active BD than in healthy controls [186]. Higher concentrations of MMP-9 in skin tissues
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of BD patients are evaluated, which may promote the severity of BD. Sera of vasculo-BD
patients also contain a higher level of MMP-9 [187,188]. Likewise, ROS anomalies caused
by neutrophils could be crucial in BD. Increased production of ROS is associated with
fibrinogen carbonylation impacting the structure and function of fibrinogen. Moreover,
ROS exhibited a marked effect on fibrinogen polymerization, clotting parameters, and
fibrin susceptibility to plasmin-induced lysis. There is evidence that neutrophil ROS can
increase fibrinogen oxidation, alter clotting architecture, and enhance thrombus progression
in BD [189,190]. In BD, the inflammatory activity of neutrophils is possibly regulated by
the secretion of various cytokines (IL-17, TNF-α, IL-1β, IFN-I), chemokines, and chemokine
receptors (CXCL8, CCR2, CXCR2, CCR1) [168,191–195].

Neutrophils in the blood of BD patients are more likely to express greater amounts
of PAD4 than in normal volunteers. Notably, higher levels of NETs and their associated
markers have been reported in patients with BD who have vascular complications. NETs
can increase thrombosis [166,174]. Neutrophils from active BD patients can release more
NETs in response to CD40L than neutrophils from inactive BD patients [196].

5.3.2. Neutrophil Heterogeneity

NLR might serve BD activity because it is substantially higher in active BD patients
than in healthy controls and inactive BD patients [197]. Enhanced low-density neutrophils
(LDN) levels might also play a role in the etiology of BD and inflammatory responses of
BD patients [198]. Neutrophil heterogeneity has not yet been thoroughly investigated in
BD. Therefore, various functions of neutrophil heterogeneity in BD remain unclear.

5.4. Atopic Dermatitis

AD is a chronic inflammatory skin disease that causes extremely itchy redness and in-
flamed skin. The most prevalent feature of atopic diseases is immune globulin E (IgE)-mediated
allergic reactions related to environmental allergens. AD is considered a heterogeneous
disorder with a spectrum of morphology, dispersion, and disease progression. The patho-
physiology is complicated, and numerous cell types are involved, including immune cells,
skin cells, and neuronal cells that monitor and control immune responses [199,200]. Neu-
trophils are the initial immune cells that infiltrate AD skin. Moreover, neutrophils can
regulate early skin hyperinnervation and upregulate the expression of activity-induced
genes and itch-signaling molecules in nerve cells [201,202]. These findings imply that
neutrophils might influence AD onset and progression via a variety of mechanisms.

5.4.1. Neutrophil-Derived Molecules

According to recent studies, both infants and adults with AD may experience clin-
ically severe allergic contact dermatitis (ACD) issues. ACD seems to be more likely to
occur in AD patients [203]. Contact hypersensitivity (CHS) is known as one of the most
frequently used animal models of ACD [204]. The CHS mouse model requires two phases:
induction and elicitation. MPO serves dual roles in the development of CHS pathogenesis.
During the induction phase, MPO enhances the synthesis of IL-1β under the skin and the
migratory activity of DC, which aids in effector T-cell priming. At the elicitation stage,
MPO promotes vascular permeability, leading to inflammatory responses. Moreover, blood
samples from children with AD have higher levels of MPO and MMPs than samples from
adults [205]. Elevation of elastase activity has been shown in peripheral blood neutrophils
of AD patients. These elevations can harm and impair skin barrier function [206]. This
indicates that the activity of neutrophils with elastase secretion is held in the acute stage
of AD. Skin samples from AD patients have much greater Cat-G levels than those from
normal controls and are associated with disease severity [101,207]. Proteinase-activated
receptor-2 (PAR-2), a protein related to itching, can be activated by Cat-S. PAR-2 aids in the
sudden development of skin disorders comparable to chronic AD in Cat-S overexpressing
transgenic (TG) mice [208]. Plasma levels of α-defensin are increased after aggravation of
AD. These plasma levels of α-defensin are positively associated with AD clinical outcomes,



Cells 2023, 12, 2621 14 of 34

IgE levels, and serum IL-8 levels but inversely associated with serum IL-10 levels [209].
Patients with AD are susceptible to a chronic inflammatory eye condition known as atopic
keratoconjunctivitis (AKC). According to Fujishima et al. [210], LTF may regulate some
atopic immunological processes in patients with AKC. LL-37 also has a vital role in AD.
An increased expression level of LL-37 in lesioned skin of AD patients as compared to
non-lesioned skin indicates a potential involvement of LL-37 in AD. It might be related
to re-epithelialization processes [211,212]. These studies have suggested that the skin of
AD patients may exhibit dysregulation of α-defensins, lactoferrin, and LL-37 [213,214].
Allergic patients, especially those with AD along with systemic inflammation, exhibit
elevated NGAL levels in their blood [215]. Furthermore, the pathogenesis of AD and other
cutaneous disorders is influenced by the high production of ROS. Higher ROS produc-
tion is associated with chronic inflammatory activation in AD [216]. In addition, LTB4
is critical for the emergence of skin allergic inflammation in a mouse model having AD
features. In injured skin, LTB4 and its receptor BLT1 are critical for the accumulation of
neutrophils and neutrophil-dependent recruiting of effector T cells. These findings prove
that LTB4-BLT1 interaction is essential for skin allergic inflammation in an AD mouse
model [217]. Neutrophils are essential for the induction and activation of CXCL10, which is
a ligand of the CXCR3 receptor. CXCL10/CXCR3 signaling shows a particular link between
nerve cells and infiltrating neutrophils that can promote itch behaviors in AD mice [202].
In AD patients, higher expression levels of CXCR2 and its ligands have been observed.
They can drive neutrophil recruitment toward skin tissues [218–220]. Choy et al. [221]
have compared transcriptomic profiles of healthy and AD skin samples and revealed that
neutrophil chemoattractants (such as GM-CSF and CXCL8) and neutrophil infiltration into
the dermis are dramatically increased in AD skin compared to healthy controls.

NETs have been found to have an indirect relationship with AD [222,223]. For instance,
Staphylococcus aureus colonization is increased on both inflamed and non-inflamed skin of
AD patients where it can further promote skin inflammation [222]. NET formation can lead
to enhanced S. aureus perseverance on AD skin [223]. However, other research studies have
shown that NET levels are not enhanced in AD patients [224]. This highlights that AD is a
heterogeneous and complicated disease. Differences in neutrophil-derived antimicrobial
peptide expression have been found in AD skin lesions at various stages [225]. Further
investigations are needed to figure out whether NETs could influence the expression of
antimicrobial peptides in patients with AD [213,224].

5.4.2. Neutrophil Heterogeneity

Patients with AD have considerably higher levels of NLR than healthy controls [226].
NLR in AD patients indicates uncontrolled inflammatory responses and disease sever-
ity [227]. Additionally, group 2 innate lymphoid cells (ILC2s) have emerged as critical
effector immune cells in triggering allergic reactions in AD. They are crucial producers of
type 2 cytokines. Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs)
as a subpopulation of neutrophils are necessary for ILC2 function to be effectively sup-
pressed. Therefore, increasing PMN-MDSCs might be helpful for controlling ILC2-driven
AD [228,229].

In summary, neutrophil-derived molecules and their heterogeneity may contribute to
the pathogenesis of AD and exacerbate the disease by various mechanisms. Further research
is required to clearly understand the mechanisms underlying the role of neutrophils and
their heterogeneity in AD and to develop new therapies specifically targeting these cells.

5.5. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is an autoimmune, chronic, and heterogeneous disease.
It can be defined by an increasing symmetric joint inflammation that causes bone ero-
sion, cartilage damage, and impairment. It has recently been clear that RA develops from
epigenetic, genetic, and environmental triggers, although immunological variables must
also play a significant role [230,231]. The pathophysiology of RA is influenced by dys-
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regulation of neutrophil activity. Neutrophils, the most prevalent leukocytes in affected
joints, are crucial for the development and persistence of RA [232,233]. Both synovial
fluid (SF) and synovial tissue (ST) from RA joints contain a high concentration of activated
neutrophils [234]. Activated neutrophils play a role in inflammation and damage to host
tissues through degranulation, which occurs either into the SF or directly onto the joint
surface. Neutrophils can migrate to the joint. The migration of neutrophils to the joint is a
defining feature of inflammatory arthritides5, notably RA. Neutrophils could also serve
as a reservoir for autoantigens that instigate the autoimmune processes that underlie this
pathogenic condition. A comprehensive grasp of the intricate involvement of neutrophils
in RA is imperative for addressing this persistent autoimmune condition.

5.5.1. Neutrophil-Derived Molecules

Higher levels of MPO have been seen within the inflamed synovial membrane of RA
patients, which can promote neutrophil recruitment, elevate inflammation, and increase
proliferation of synovial fibroblasts [235]. Furthermore, the level of NE is increased in RA
joints because it is selective for a variety of substrates, including collagen, elastin, and
fibronectin. NE can cause inflammatory responses that contribute to cartilage degeneration
by activating proteinase-activated receptors (PARs) [236]. Cat-G is involved in the destruc-
tion and degradation of cartilage in RA. The number of neutrophils and the level of IL-6 in
SF are directly connected to Cat-G. Patients with RA have elevated Cat-G activity in their
SF. In ST, neutrophils express Cat-G to a lesser extent than synovial lining cells [237–239].
Moreover, serum α-defensins can serve as helpful markers for estimating the severity of
the disease and periods of remission in RA patients. Levels of α-defensins are greater in
patients with active RA than in those who are in remission [240]. Neutrophil-derived LTF
can act as an endogenous ligand for TLR4 during inflammation of RA synovial fibroblasts
(RASFs). LTF can increase mRNA expression levels of cytokines such as IL-6, CCL20,
and IL-8 in RASFs activated by TNF-α [241]. The highest levels of salivary LL-37 have
been reported in the RA group with chronic periodontitis [242]. Furthermore, Hoffmann
et al. [243] have examined expression levels of LL-37 in RA patients and rats in comparison
with healthy joints. According to their findings, synovial membranes and joints of RA
patients as well as RA rats all showed elevated levels of LL-37. Patients with RA had
considerably higher NGAL concentrations in their SF than those with osteoarthritis (OA).
NGAL can eradicate the proliferative action of epidermal growth factor (EGF) and fibroblast
growth factor (FGF)-2 [244]. Moreover, MMP-9 can increase joint destruction by promoting
the survival, invasion, and release of inflammatory cytokines by synovial fibroblasts of
RA [245]. MMP-2 and MMP-9 have considerably higher levels in plasma samples of RA
patients with vasculitis than from those without vasculitis [246]. The ability of neutrophils
to generate ROS is greater in blood and SF samples of RA patients than healthy controls.
Increased production of ROS can result in oxidative stress, which might cause tissue dam-
age and ultimately make RA more chronic [247]. Likewise, in murine arthritis, enhanced
production of LTB4 and IL-1β allows RA neutrophils to trigger their recruitment [248].
LTB4 levels are increased in serum, SF, and ST samples of RA patients in comparison with
healthy controls [249]. These findings imply that LTB4 and its receptor BLT1 are probably
involved in the inflammation seen in inflammatory arthritis [250]. Numerous investigations
have shown that RA patients exhibit significantly higher concentrations of calprotectin in
both SF and serum samples compared to healthy controls [251]. According to previous
reports, the generation of pro-inflammatory molecules, cell migration, apoptosis, and cell
differentiation are all linked to calprotectin [252,253]. In RA patients, neutrophils can
produce large amounts of several inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-17β,
IL-20, IL-22) that mediate increased neutrophil autophagy [254]. Transcriptomics research
has revealed that RA SF neutrophils express a variety of chemokines (CXCL1, CXCL2, and
CXCL8) at higher levels as compared to healthy control neutrophils. These chemokines are
essential for controlling the inflammation response in the joint [234].



Cells 2023, 12, 2621 16 of 34

Moreover, patients with RA have PAD2 and PAD4 in their ST and SF [255]. In addition,
Spengler et al. [256] have reported that neutrophils that undergo NETosis in the joints of
RA patients can generate active PAD, which can help provide citrullinated autoantigens.
RA autoantibodies and other proinflammatory cytokines can cause neutrophils to produce
NETs [257]. In blood and synovium samples of RA patients, increased NET formation
has been reported [258,259]. The role of these compounds allows significant infiltration of
neutrophils into the synovium. Furthermore, they can help prolong the survival of cells
within the joint by improving the recruitment and migration ability of neutrophils.

5.5.2. Neutrophil Heterogeneity

NLR in the blood may indicate the level of neutrophil-associated inflammation within
the synovial membrane of RA patients. NLR is believed to be able to predict responses to
DMARD therapy in the progression of RA [260]. High levels of LDGs have been found in
the blood of RA patients [261]. Although treatment has little effect on LDG levels in RA
blood, LDG levels are correlated with markers of disease activity [261,262]. G-MDSCs can
prevent autologous T lymphocytes from becoming activated and proliferating by producing
ROS at the immunological synapse [263]. Blood and SF samples of RA patients contain
G-MDSCs that can prevent T-cell proliferation [264,265]. In mouse models of arthritis,
G-MDSCs can increase the amount of Treg cells while inhibiting T cell proliferation and
differentiation into Th1 and Th17 cells [266–268]. The heterogeneity of neutrophils in RA
demonstrates the complicated nature of this disease.

5.6. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a chronic, complex, prototypical autoimmune,
and worldwide disease. SLE is influenced by environmental, endocrine, immune, and ge-
netic predispositions. Moreover, the body’s immune system overproduces autoantibodies,
which results in widespread tissue damage and inflammation. Increased autoantibodies
and accumulation of immune complexes are major hallmarks of SLE patients [269–271].
Up to this point, the majority of pathology research has concentrated on abnormalities of
adaptive immune responses. However, the pathophysiology of SLE has currently received
significant interest in innate immune responses, which operate earlier, before adaptive
immune responses. Particularly, neutrophils exhibit multiple aspects of dysregulation. Neu-
trophils exhibit epigenetic alterations and genomic modifications. Furthermore, neutrophils
play a major role in the development of SLE by encouraging exposure to self-antigens and
generation of autoantibodies. Recently, it has been found that neutrophil ferroptosis has a
significant pathogenic impact on SLE. Moreover, interferonopathies, which are defined by
excessive type 1 IFN production due to genetic mutation, have a crucial role in SLE. This
dysregulated type 1 IFN production promotes the generation of autoantibodies, which is
an important aspect of SLE [272]. Dysregulated innate immunity is sufficient to upset the
balance of immunological tolerance [273–275]. Overall, neutrophils play a complicated role
in SLE.

5.6.1. Neutrophil-Derived Molecules

MPO plays an integral role in the SLE inflammatory process. SLE patients have higher
levels of MPO in their plasma than healthy controls [276–278]. Levels of NE produced by
resting neutrophils from SLE and lupus nephritis (LN) are lower than controls. Interestingly,
phorbol-12-myristate-13-acetate stimulation can dramatically enhance the release of NE in
patients [279]. Cat-G is the main antigen for ANCAs in SLE. Cat-G-ANCA is significantly
higher in the sera of active SLE patients than in inactive patients and normal controls.
It is rapidly decreased after treatment with corticosteroid drugs [280]. However, it is
necessary to clarify the exact function of Cat-G in SLE. According to previous studies,
the concentration of serum α-defensins is a reliable biomarker of LN [281]. It positively
correlates with disease activity. It has been demonstrated that anti-ribonucleoprotein
antibodies can activate neutrophils in SLE [282]. Neutrophil proteins, including LL37 and
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HMGB1, are also released to a greater extent in SLE patients than in controls [282]. For
NGAL, elevated levels in urine are particularly higher in patients with neuropsychiatric SLE
and active LN [283,284]. MMP-9 has multiple roles in the development of tissue destruction
and inflammation. Several authors have found that serum levels of MMP-9 are higher in
SLE patients than in healthy controls [285]. In contrast, certain researchers have not found
a significant difference in MMP-9 between those with SLE and those without SLE [286,287].
A recent study [288] has revealed that patients with SLE show hypomethylation in the
MMP-9 promoter region. The same study also found a relationship between MMP-9
methylation level and renal involvement, suggesting that MMP-9 methylation level could
be used as a diagnostic biomarker for SLE. ROS production is impaired in neutrophils of
patients with SLE. Insufficient production of ROS can elevate IFN-α, which is important
for preventing tolerance and triggering the pathogenesis of SLE [289,290]. Serum levels of
LTB4 are markedly higher in patients with SLE than in healthy controls [291]. Calprotectin
has also recently been linked to the pathophysiology of SLE. Compared to controls, SLE
patients have significantly higher serum levels of calprotectin [292,293]. The main way that
neutrophils contribute to the onset of SLE is by releasing type I interferons (IFN-I) along
with additional pro-inflammatory cytokines (IL-1β, IL-18, TNF-α) and inducing systemic
tissue damage [115,275]. Chemokines including CXCL1, CXCL2, CXCL3, CXCL5, and
CXCL8 are also linked to neutrophil chemoattractants. These chemokines have been found
in patients with SLE and LN [17,294].

PAD4 significantly regulates TLR7-mediated autoimmunity in SLE. PAD4 could have
a pathogenic function in SLE because of its role in NET formation [295]. The production
of autoantigens in SLE is associated with NETs and a related death pathway, NETosis.
Additional research has demonstrated that NETs can stimulate plasmacytoid dendritic cells
capable of producing IFN-I, an important cytokine in the pathophysiology of SLE [282,296,
297]. Therefore, it can be deduced that a lack of balance between NET development and
removal in SLE patients may significantly contribute to disease deterioration.

5.6.2. Neutrophil Heterogeneity

NLR is higher in SLE patients. It is associated with significant immunopathological
processes such as IFN-I production and neutrophil activation [298]. SLE patients possess
LDGs that have an increased ability to produce proinflammatory cytokines such as IFN-I
and TNF, which can dramatically increase the risk of vascular injury. Thus, LDGs might be
important in the pathophysiology of SLE [299]. G-MDSCs are essential for triggering IFN-I
signaling in B cells, which has a substantial impact on the pathogenesis of SLE [300]. CD177+
neutrophils also have a role in SLE. Blood samples from SLE patients are substantially
more likely to show co-expression of mature PR3 and CD177+ neutrophils than those from
healthy controls [301]. Recent studies have shown that the pathophysiology of SLE might
be influenced by neutrophil heterogeneity [302]. More research is needed to determine
how neutrophil heterogeneity plays a role in the pathophysiology of SLE. Overall, these
findings indicate that neutrophil-secreted substances and a diverse neutrophil population
contribute to the development and maintenance of an autoimmune response in SLE.

6. Therapeutic Interventions Targeting Neutrophil-Derived Molecules
in Inflammatory Diseases

According to findings outlined in previous sections, neutrophils have a vital role in
inflammatory conditions. Uncontrolled or inappropriate activity of neutrophils could be a
factor in tissue damage in inflammatory conditions and other diseases. Moreover, excessive
release of neutrophil-derived molecules and neutrophil heterogeneity can promote inflam-
matory responses in neutrophil-mediated diseases. In such circumstances, therapeutic
approaches to target neutrophils would be able to suppress neutrophil activity by inhibiting
excessive secretion of neutrophil-derived molecules. As listed in Table 1, specific targets
and inhibitors can be used to modulate neutrophil function in disease models such as MS,
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AD, IBD, BD, RA, and SLE. Nevertheless, future studies are still needed to reduce treatment
side effects and improve function.

Table 1. Potential or ongoing therapeutics for inhibiting neutrophil-derived molecules.

Target Molecules Diseases Compounds/Inhibitors Administration Reported Effects References

MPO

MS

N-acetyl
lysyltyrosylcysteine
amide (KYC),
4-aminobenzoic acid
hydrazide (ABAH)

Intraperitoneal (IP)
injection into mice

Diminished axonal
injury and
demyelination in NOD
EAE mice.

[303,304]

AD KYC IP injection into mice

Reduced both ear
swelling and vascular
permeability in the CHS
model.

[204]

IBD AZD3241 Oral administration to
mice

Ameliorated the
MPO-associated tissue
damage in the
experimental colitis.

[305]

RA Tetrandrine IP injection into mice
Anti-inflammatory
effect by significantly
decreasing MPO level

[306]

MMP-9

MS D-penicillamine IP injection into mice
Inhibited the
progression of EAE
symptoms

[307]

AD Ro 31-9790
Tested on skin-wash
samples from AD
patients

Suppressed MMP
activity [308]

IBD Alpha-lipoic acid,
RO28-2653

Oral administration to
DSS colitis model.

Protected against UC,
acute colitis, and
systemic damage

[309,310]

RA MMP-9 siRNA
In vitro culture of
synovial fibroblasts
from RA patients

Suppressed viability of
RA synovial fibroblast [245]

SLE Chloroquine phosphate Oral administration to
SLE patients

Reduced serum MMP-9
levels [311]

Cat-G

IBD

Cat-G inhibitor
[Ac-Phe-Val-Thr-PhgP
(4-guanidine)-(OC6H4-
4-S-Me)2]

In vitro analysis of fecal
samples from patients
with IBD

Reduced Cat-G activity
in both UC and CD. [312]

RA
α1-antichymotrypsin,
phenylmethylsulfonyl
fluoride (PMSF)

In vitro culture of SF
from RA patients Inhibited Cat-G activity [239]

PAD4

IBD Cl-amidine Oral administration to
mice

Alleviated clinical
colitis and tissue
inflammation

[313]

BD Cl-amidine
In vitro culture of
neutrophils isolated
from BD patients

Reduced NETosis [166]

RA JBI-589 Oral administration to
mice

Reduced the severity of
arthritis [12]

SLE Cl-amidine Subcutaneous injection
to murine lupus model

Inhibited NETs
formation and
improved thrombosis
risk

[314]

NETs

IBD
anti-citrullinated
protein antibody
(tACPA)

IP injection into mice Reduced inflammation
in colon tissues. [315]

BD
Colchicine,
Dexamethasone,
Apremilast

In vitro culture with
neutrophils of patients;
oral administration to
patients

Inhibited the release of
NETs and NETosis [166,316,317]

RA
Tocilizumab, polydatin,
triptolide, Anti-TNF-α
Ab, anti-IL-6 Ab

Administered to mice
models and human
patients

Reduced NETosis [258,318–320]

SLE
Rituximab with
belimumab,
Vitamin D

Administered to SLE
patients

Decreased SLE
symptoms [321,322]
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Table 1. Cont.

Target Molecules Diseases Compounds/Inhibitors Administration Reported Effects References

ROS

MS Apocynin (NADPH
oxidase inhibitor)

Oral administration to
EAE mouse model

Reduced ROS
production [323]

IBD Telmisartan (TLM),
VAS2870

Oral and IP treatment of
colitis rats and mice,
respectively.

Reduced ROS
production [324,325]

BD
N-Acetyl Cysteine
(NAC),
Apremilast

In vitro culture with
neutrophils of patients;
oral administration to
patients

Inhibited ROS and
NETs production [166,317]

RA Mitochondrial division
inhibitor 1 (Mdivi-1)

In vitro culture with
fibroblast-like
synoviocytes from RA
patients

Inhibited ROS
production and severity
of collagen-induced
arthritis

[326]

SLE Sulforaphane (Nrf2
inducer)

IP injection to MRL/lpr
female mice

Neutralized ROS
production and
improved symptoms

[327]

NE

MS Sivelestat sodium
hydrate (SNa) IP injection to EAE mice Reduced Th17-induced

EAE [328]

AD DSCG-disodium
cromoglycate (Ditec)

Aerosol inhalation to
AD patients

In vitro, inhibited the
elastase activity. [206]

IBD Sivelestat sodium
hydrate (SNa)

Subcutaneously injected
into mice

Ameliorated colitis with
the reduced level of
IL-17

[329]

RA EL-17 Oral administration to
rat models Alleviated articular pain [330]

7. Conclusions

Neutrophils are considered vital cells of our innate immunity with a main function
in host defense. Besides being a significant player in innate immunity, a growing body
of research suggests that neutrophils have a variety of functions in many infectious and
inflammatory diseases. The main way neutrophils aggravate disease is by producing
neutrophil-derived molecules and NETs. Neutrophil-derived molecules, ROS, and NETs
have a double-edged effect on the severity of many inflammatory diseases. Furthermore,
neutrophils demonstrate a wide variety of phenotypes. Recent evidence reveals the pres-
ence of specific neutrophil heterogeneity in inflammatory diseases. Nonetheless, their
properties, prevalence, and pathological potential require further investigation. Although
there have been immense advances in our awareness of the functions of neutrophils in
diseases, there is still more to learn regarding the mechanisms behind the migration of
neutrophil-derived molecules to different tissues and the function of neutrophil hetero-
geneity in pathological conditions.

Moreover, several researchers have concentrated their attempts on targeting neutrophil
activity as a potential treatment. Many inhibitors and compounds have been recognized
as therapeutics by targeting neutrophils over the years. Despite that, more studies should
focus on limiting negative effects of inhibitors and substances used for preventing massive
release of neutrophil-derived molecules and NET formation. Furthermore, reducing or
blocking neutrophil heterogeneity needs additional knowledge of their origin and func-
tion in inflammatory diseases and immunological defense. Altogether, understanding
neutrophil activity, neutrophil-mediated pathogenesis, neutrophil-derived molecules, and
neutrophil heterogeneity is imperative. These considerations, by particularly targeting
pathogenic neutrophils without adversely affecting immunity, may therefore be crucial in
the development of novel therapies for inflammatory diseases.
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Abbreviation

ANCAs Antineutrophil cytoplasmic antibodies
AD Atopic dermatitis
BD Behçet’s disease
CNS Central nervous system
CD Crohn’s disease
Cat-G Cathepsin G
EAE Experimental autoimmune encephalomyelitis
GPCRs G-protein-coupled receptors
G-CSF Granulocyte-colony stimulating factor
GM-CSF Granulocyte macrophage-colony stimulating factor
G-MDSCs Granulocytic myeloid-derived suppressor cells
IL Interleukins
IFN Interferons
IBD Inflammatory bowel disease
LTB4 Leukotriene B4
LDGs Low-density granulocytes
LN Lupus nephritis
MPO Myeloperoxidase
MMPs Matrix metalloproteinases
MS Multiple sclerosis
MBP Myelin basic protein
NE Neutrophil elastase
NETs Neutrophil extracellular traps
NGAL Neutrophil gelatinase-associated lipocalin
NLR Neutrophil-to-lymphocyte ratio
PAD Peptidyl arginine deiminase
ROS Reactive oxygen species
RRMS Relapsing remitting multiple sclerosis
RA Rheumatoid arthritis
SF Synovial fluid
ST Synovial tissue
SLE Systemic lupus erythematosus
TLRs Toll-like receptors
TNF Tumor necrosis factor
UC Ulcerative colitis
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