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Abstract 

Background Air pollution, weather, pollen, and influenza are typical aggravating factors for asthma. Previous studies 
have identified risk factors using regression‑based and ensemble models. However, studies that consider complex 
relationships and interactions among these factors have yet to be conducted. Although deep learning algorithms can 
address this problem, further research on modeling and interpreting the results is warranted.

Methods In this study, from 2015 to 2019, information about air pollutants, weather conditions, pollen, and influenza 
were utilized to predict the number of emergency room patients and outpatients with asthma using recurrent neural 
network, long short‑term memory (LSTM), and gated recurrent unit models. The relative importance of the environ‑
mental factors in asthma exacerbation was quantified through a feature importance analysis.

Results We found that LSTM was the best algorithm for modeling patients with asthma. Our results demonstrated 
that influenza, temperature,  PM10,  NO2, CO, and pollen had a significant impact on asthma exacerbation. In addi‑
tion, the week of the year and the number of holidays per week were an important factor to model the seasonality 
of the number of asthma patients and the effect of holiday clinic closures, respectively.

Conclusion LSTM is an excellent algorithm for modeling complex epidemiological relationships, encompassing non‑
linearity, lagged responses, and interactions. Our study findings can guide policymakers in their efforts to understand 
the environmental factors of asthma exacerbation.
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Background
Asthma is one of the most prevalent respiratory diseases 
that have a significant public health burden. According to 
the Global Asthma Report 2022, 262 million people were 
affected by asthma, and 461 thousand people died from 
asthma worldwide in 2019 [1]. In addition, asthma is a 
chronic disease that seriously reduces patients’ quality of 
life but has no definitive cure [2].

Due to the severity of asthma, many previous studies 
have attempted to understand the risk factors that exac-
erbate asthma, and various environmental factors such 
as air pollution, tobacco smoke, weather, allergens such 
as pollen, and pathogens such as influenza viruses have 
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been identified as culprits for asthma exacerbation [3]. 
These studies mostly used regression-based statistical 
models such as the generalized linear model (GLM) [4], 
generalized additive model (GAM) [5], and distributed 
lag nonlinear model (DLNM) [6] and ensemble-based 
machine learning models such as the random forest 
(RF) [7] and gradient boosting machine (GBM) [8]. Cas-
sino et al. analyzed tobacco use and  O3-associated emer-
gency room visits for asthma in New York City based 
on a Poisson regression model [9]. Lee et al. studied the 
effects of air pollutants, pollen, weather conditions, and 
viruses on the number of emergency room patients with 
asthma in Seoul, South Korea, using DLNM [10]. Chen 
et  al. studied the lagged nonlinear relationship between 
temperature and adult asthma hospitalizations in Beijing 
using the DLNM [2]. Sun et  al. studied the association 
between pollen (trees, weeds, and grasses) and asthma in 
North Carolina using DLNM [11]. Jeddi et al. compared 
machine learning models for pediatric asthma diagno-
sis by considering environmental factors such as mites, 
cold air, strong odors, and mold [12]. Although previous 
studies have succeeded in identifying risk factors and 
modeling the risk of asthma using conventional statisti-
cal and machine learning algorithms, our understanding 
and modeling accuracy remain insufficient because of the 
complexities associated with nonlinearity, lagged rela-
tionships, interactions between factors, multicollinearity, 
and various confounders.

To model the relationship with higher accuracy, 
researchers have started to utilize state-of-the-art deep 
learning algorithms such as recurrent neural networks 
(RNNs) [13], long short-term memory (LSTM) [14], and 
gated recurrent units (GRUs) [15]. Woo et  al. predicted 
the peak expiratory flow rate in children with asthma 
using real-time indoor air pollution data using RNN, 
GRU, and deep neural network [16]. Kim et  al. studied 
the association between indoor particulate matter (PM) 
and asthma attacks in children in South Korea using the 
LSTM [17]. Chang and Ku used LSTM to predict the 
daily number of patients with asthma affected by weather 
and air pollution in Seoul, South Korea [18]. As research 
based on deep learning algorithms in the field of public 
health is still in its early stages, more research on mod-
eling methodologies and epidemiological results from the 
models is necessary.

This study examined the association between the 
number of patients with asthma and 18 environmen-
tal factors in South Korea between 2015 and 2019 using 
the RNN, LSTM, and GRU algorithms. Eighteen envi-
ronmental factors were categorized into air pollution, 
weather, pollen, and influenza. The accuracy of the model 
developed in this study was compared with that of con-
ventional algorithms (GLM, GAM, RF, and GBM), and 

permutation feature importance analysis was performed 
to identify the critical factors in asthma exacerbation and 
understand the interaction between various factors.

Methods
Data collection
Weekly counts of patients with asthma in South Korea 
from 2015 to 2019 were collected by the Health Insur-
ance Review and Assessment Service. Patients with 
asthma were defined as those aged 17 years or older 
who visited a healthcare facility and were diagnosed 
with asthma (ICD-10 codes J45, J46, J820, and J828). 
The number of outpatients and emergency room (ER) 
patients with asthma was determined separately. Envi-
ronmental data were collected from South Korea from 
2015 to 2019. Daily air pollutant concentrations of CO, 
 NO2,  O3,  PM10,  PM2.5, and  SO2 were collected from 556 
nationwide measurement stations by the Korea Environ-
ment Corporation. Daily meteorological data on mean 
temperature, minimum temperature, maximum tem-
perature, diurnal temperature range, humidity, precipita-
tion, solar radiation, and wind speed were collected from 
100 measurement stations in South Korea by the Korea 
Meteorological Administration. The data collected from 
multiple measurement stations spread across the entire 
nation were averaged to obtain national air pollution 
and meteorological data. Any missing values, if present, 
from the measurement stations were excluded during the 
averaging. Data regarding the hazard index of the daily 
pollen concentration from oaks, pines, and grasses were 
obtained from the Korea Meteorological Administration. 
This index was designed to forecast pollen concentra-
tions based on meteorological and environmental factors 
(see Additional file  1: Table  S1 for a detailed descrip-
tion). Weekly numbers of influenza and Middle East res-
piratory syndrome (MERS) patients were collected by 
the Korea Centers for Disease Control and Prevention. 
Patients with influenza were defined as those diagnosed 
with influenza (ICD-10 codes J10.0–J11.8) or those who 
had an influenza-like illness (ILI). ILI is defined by WHO 
as a respiratory infection with onset within the past ten 
days and a fever of ≥ 38  °C and cough or sore throat. 
Daily and regional data were averaged and converted into 
weekly national data for South Korea.

Prediction of patients with asthma using environmental 
factors based on deep learning algorithms
To model the relationship between the number of 
patients with asthma (outpatients or ER patients) and 
environmental factors, we used 18 environmental fac-
tors and four potential confounders as input data. The 
18 environmental factors included six air pollutant con-
centrations (CO,  NO2,  O3,  PM10,  PM2.5, and  SO2), three 
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pollen concentrations (pollen from oaks, pines, and 
grasses), eight meteorological conditions (mean tem-
perature, minimum temperature, maximum temperature, 
diurnal temperature range, humidity, precipitation, solar 
radiation, and wind speed), and the number of patients 
with influenza. The four confounders were the week of 
the year, date, number of holidays per week, and number 
of patients with MERS. The week of the year is an indi-
cator of where a particular week falls numerically within 
a year. The first week (week 1) of the year is defined as 
the week containing the first Wednesday of the year. 
For each year from 2015 to 2019, the week of the year is 
numbered from 1 to 52. The date is a number that inci-
dates a specific point in time, and it is calculated as the 
number of days that have passed since January 1, 1970. 
These were used to model the confounding effects of sea-
sonality, long-term trends, holidays, and the 2015 MERS 
outbreak. All input factors were preprocessed with mini-
mum–maximum normalization before modeling.

We used the RNN, LSTM, and GRU as the deep 
learning algorithms. The model consisted of four lay-
ers: an input layer, two hidden layers, and an output 
layer. Recurrent cells were used only in the input layer, 
whereas simple, fully connected neural network cells 
without recurrent connections were used in the hidden 
and output layers to simplify the model (see Additional 
file  1: Figure S1 for the topology). Dropout techniques 
were applied to all layers to prevent overfitting [19, 20]. 
The optimum model size and dropout rates were selected 
empirically by finding the best model among various can-
didates (see Additional file  1: Table  S2 for the hyperpa-
rameter candidates). We used walk-forward expanding 
window cross-validation, where data from 2015–2016, 
2015–2017, and 2015–2018 were used for training and 
data from 2017, 2018, and 2019 were used for testing, 
respectively. Walk-forward cross-validation is a well-
known validation method for time-series data to remove 
the possibility of prediction leakage [21, 22]. The length 
of time steps in RNN, LSTM, and GRU was set as 5 weeks 
to model the long-term lagged effects of environmental 
factors on asthma, and the training learning rate was set 
as 0.004. During training, the mean squared error (MSE) 
for the test set was monitored, and training was stopped 
when the observed MSE did not improve after 50 epochs. 
The modeling and training were implemented using the 
Python packages “keras” and “tensorflow” [23, 24].

Comparison with conventional modeling methods
We compared the  R2 values of the neural network models 
with those of the GLM, GAM, RF, and GBM. The input 
and output variables used for modeling were identical to 
those used for the deep learning algorithms. The GLM 
and GAM were fitted using the maximum likelihood 

method under the assumption of a quasi-Poisson distri-
bution. For the modeling and training of RF and GBM, 
the “sklearn” package of Python was used. The model 
hyperparameters for RF and GBM were optimized using 
“best_estimator_” of the “Grid method for the mod-
el’s trainingSearchCV” function (see Additional file  1: 
Table S3 for the candidates) [25].

Permutation feature importance
After modeling, we evaluated the importance of all input 
features in the final model based on the permutation fea-
ture importance method [26], where feature importance 
is defined as the increase in the MSE when the values of a 
single feature are temporally shuffled. This method helps 
identify features with high contributions in predicting the 
output. In addition, we define the interaction between 
the two features as follows:

here, I is the interaction between two features, A and B, 
 FIAB is the increase in MSE with both A and B shuffled, 
 FIA is the increase in MSE with A shuffled, and  FIB is the 
increase in MSE with B shuffled.

Results
General analysis of the number of patients with asthma
Figure  1 shows the weekly numbers of outpatients and 
ER patients with asthma in South Korea for each year 
from 2015 to 2019 (see Additional file 1: Figure S2 for the 
5-year curves and Additional file 1: Table S4 for descrip-
tive statistics). From 2015 to 2019, the number of outpa-
tients with asthma decreased, whereas the number of ER 
patients with asthma increased. The number of patients 
with asthma showed seasonal variability (Fig.  1), with 
the lowest in summer (July and August) and the highest 
in winter (December and January) and spring (March 
and April). Additional file  1: Figures  S3-S8 show the 
time-series curves of various independent variables, and 
Additional file 1: Tables S5 and S6 show the descriptive 
statistics for air pollutant concentrations and climate 
conditions in South Korea during the study period.

The areas shaded in green in Fig. 1 (between Weeks 1 
and 4, and between Weeks 48 and 52) show the weeks 
when the number of influenza patients surged, espe-
cially in 2018 (see Additional file  1: Figure S3 to find 
the surge in influenza patients). As shown in the figure, 
the number of patients with asthma increased during 
this period. The areas shaded in blue show the weeks 
in which the two biggest holidays in Korea, Lunar 
New Year’s Day (between Weeks 4 and 8) and Korean 
Thanksgiving Day (between Weeks 36 and 41), were 
located. During the holidays, the number of outpa-
tients shows downward spikes due to the holiday clinic 

(1)I = FIAB − FIA − FIB
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closures. In contrast, the number of ER patients shows 
upward spikes due to the “balloon effect” of the holiday 
clinic closures. This study used the number of holidays 
per week (Additional file 1: Figure S3) to model the con-
founding effects of holidays. The area shaded in darker 
red in Fig. 1 (between weeks 21 and 28) represents the 
weeks in 2015 when the MERS outbreak occurred in 
South Korea (see Additional file  1: Figure S3 for the 
number of patients with MERS). MERS is one of the 
16 diseases classified as a “Class 1 infectious disease,” a 
term used for diseases of significant health importance 
owing to its high mortality rates; it was the only Class 1 
infectious disease that caught public attention in South 
Korea during the study period. The area in lighter red 
(between weeks 28 and 32) shows the weeks between 
the last identification of patients with MERS and South 
Korea’s official declaration of a “de facto end” to MERS 
(July 28, 2015). During this period, the number of ER 
visits in many tertiary hospitals where patients with 
MERS were admitted was significantly reduced in 2015 
because people were afraid of being infected. Since the 
MERS outbreak only occurred in 2015, the number of 

ER visits between weeks 21 and 32 in 2015 was appar-
ently smaller than those during 2016–2019 as shown in 
Fig. 1.

This is a confounding effect of Class 1 infectious dis-
eases, such as MERS, and we attempted to model this 
effect using the number of patients as an independent 
variable. Note that there is a four-week lag between the 
last identification of the patient with MERS (Week 28) 
and getting back to normal with the declaration of “de 
facto end” (Week 32). LSTM and GRU are suitable for 
modeling such long lags using their long-term memory.

Modeling patients with asthma based on deep learning 
algorithms
To determine the best model for predicting the number 
of patients with asthma, we generated and trained 648 
models of RNN, LSTM, and GRU (216 models each) and 
evaluated them with  R2 based on a walk-forward cross-
validation framework. Figure 2 shows the  R2 histograms 
of 216 RNN, LSTM, and GRU models. The LSTM and 
GRU models performed better than the RNN models 
in predicting the number of patients with asthma. This 

Fig. 1 The number of outpatients and ER patients with asthma in South Korea each year from 2015 to 2019. The areas shaded in green, red, 
and blue highlighted the weeks when the numbers of influenza patients, patients with MERS, and holidays surged, respectively. The peaks 
in the green and blue periods correspond to the peaks in the number of influenza patients and the number of holidays in a week. The smaller 
number of ER visits during the red period in 2015 compared to 2016–2019 can be attributed to the MERS outbreak that occurred in 2015
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may be due to the internal gates that solve the vanishing 
gradient problem in the RNN. Our results show that, in 
general, LSTM models perform slightly better than GRU 
models. This may be due to the higher number of gates in 
the LSTM model than in the GRU model (three in LSTM 
and two in GRU), providing more flexibility in modeling.

Additional file 1: Figure S9 shows the performance  (R2) 
scatter plot for the 648 RNN, LSTM, and GRU models. 
The top 10% of the models are located in Area 1. Addi-
tional file  1: Table  S7 lists all hyperparameter values of 
the models in Area 1. For the final model, we selected the 
model that provided the best average performance for 
outpatients and ER patients  (R2 values of 0.723 for outpa-
tients and 0.650 for ER patients).

Performance comparison of asthma patient predictive 
models
Table  1 compares the performances of the final RNN, 
LSTM, and GRU models with those of conventional algo-
rithms. The hyperparameters used in the final model 
are listed in Additional file  1: Table  S7. Based on our 
results, LSTM was the best model for outpatients and 

ER patients, with  R2 of 0.723 and 0.650, respectively. This 
algorithm performed better than the other algorithms 
investigated in this study. The ensemble-based mod-
els (RF and GBM) performed the worst for both outpa-
tients and ER patients  (R2 of − 0.321–0.583), whereas the 
regression-based models (GLM and GAM) ranked in the 
middle  (R2 of 0.631–0.706).

The  R2 gap between the training and test sets was the 
smallest for the GLM, indicating the least overfitting 
among all algorithms. This is likely the result of linear 
modeling, which has a lower chance of overfitting than 
nonlinear modeling. The  R2 gap was most significant for 
RF and GBM, indicating considerable overfitting. The 
gaps for RNN, LSTM, and GRU were smaller than those 
for GAM, RF, and GBM, despite the complexity and flex-
ibility of the models. This results from the dropout and 
early stopping techniques implemented in training.

Feature importance analysis
Figure 3 shows the results of the feature importance anal-
ysis for outpatients and patients in the ER. In Fig. 3, the 
blue dashed line shows the model’s baseline MSE, and 

Fig. 2 Performance  (R2) histograms of 216 RNN, LSTM, and GRU models

Table 1 Performance  (R2) comparison among various algorithms for training and test sets

Model Training Test Gap (Training–Test)

Outpatients ER patients Outpatients ER patients Outpatients ER patients

GLM 0.870 0.792 0.672 0.637 0.198 0.155

GAM 0.943 0.888 0.706 0.631 0.237 0.257

RF 0.857 0.508 0.540 ‑0.321 0.317 0.829

GBM 0.957 0.907 0.583 ‑0.128 0.374 1.035

RNN 0.894 0.803 0.625 0.606 0.269 0.197

LSTM 0.886 0.861 0.723 0.650 0.163 0.211

GRU 0.905 0.827 0.673 0.651 0.232 0.176
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any feature that yielded a higher MSE than the baseline 
after shuffling was considered significant (the higher the 
value, the more important it is). Influenza was one of the 
most important factors for outpatients and ER patients 
among the various environmental factors. Influenza 
can cause airway swelling, trigger asthma attacks, and 

exacerbate symptoms [27]. Temperature substantially 
impacted the number of outpatient visits and had little 
effect on the number of ER visits. This can be interpreted 
as the temperature being associated more with the grad-
ual development of asthma than the acute development 
of asthma, which causes patients to visit non-emergency 

Fig. 3 Feature importance of (a) outpatients and (b) ER patients



Page 7 of 9Hwang et al. Respiratory Research          (2023) 24:302  

care facilities. Among four temperature-related factors 
(mean, maximum, minimum, and diurnal temperature 
range), the diurnal temperature range and minimum 
temperature were the two most critical factors affecting 
outpatients with asthma. Air pollutants such as  NO2, CO, 
and  PM10 had a significant impact on outpatients while 
they had little impact on ER patients. This may indicate 
that asthma exacerbation attributable to  NO2, CO, and 
 PM10 is not severe enough for patients to visit ER. Pine 
pollen had a substantial impact on the number of ER 
patients with asthma, whereas it had a relatively smaller 
impact on the number of outpatients with asthma. The 
association between pine pollen and ER patients with 
asthma can be observed in Additional file  1: Figure S8 
during the pine pollen season (between weeks 16 and 
20). The week of the year and the number of holidays 
per week were also important in modeling the seasonal 
variability and confounding effect of holiday clinic clo-
sure, respectively. Additional file 1: Figure S10 shows the 
two-dimensional feature importance analysis. Our result 
indicates that the simultaneous exposure to both  NO2 
and CO has a synergic effect on asthma exacerbation. 
However, there is no significant interaction effect among 
other environmental factors.

Discussion
The climate is known for impacting asthma directly 
through the airway response to climate or indirectly 
through altered exposure to air pollutants, allergens, 
and pathogens [28]. For example, high temperatures 
increase the ambient ozone through a photochemical 
reaction [29]. In addition, abrupt changes in weather and 
an extensive diurnal temperature range can increase the 
risk of asthma by affecting inflammatory responses and 
immunity [30–32]. In this study, we examined the associ-
ation between outpatients with asthma and climate, and 
we showed that diurnal temperature range and minimum 
temperature are important factors in modeling. This 
result agrees with the results of previous studies. Chen 
et al. showed that both low and high temperatures were 
associated with an increased risk of asthma, whereas the 
majority of the burden was attributable to moderate cold 
exposures [2]. Xu et  al. and Kim et  al. studied the rela-
tionship between the diurnal temperature difference and 
asthma [33, 34].

Air pollutants are associated with asthma through both 
direct and indirect mechanisms [35]. The infiltration 
of air pollutants can directly trigger inflammation and 
increase oxidative stress, which may lead to cell and tis-
sue damage in airways [36–38]. Air pollutants can also be 
involved in indirect mechanisms interacting with inhaled 
pathogens and allergens, thereby increasing the risk of 
infections and allergic reactions [35]. The influence of 

 NO2 and CO on asthma patients was observed in this 
study, which agrees with a previous study demonstrat-
ing the impact of exposure to traffic emissions such as 
 NO2 and CO on asthma [39]. Additionally, PMs may act 
as a container for allergens and pathogens such as pollen, 
fungal spores, and viruses, delivering them deep into the 
airways [40, 41]. In this study, the risk of asthma exacer-
bation with  PM10 was higher than that with  PM2.5, which 
is consistent with the results of a previous study by Tecer 
et al. [42].

Influenza infection can trigger an immune response 
by releasing cytokines and increasing susceptibility to 
asthma [27, 43]. Several studies have reported that influ-
enza is associated with asthma exacerbation in adults [10, 
44, 45].

This study had a few limitations. First, public environ-
mental data was measured at official stations, instead 
of personal exposure data. This may have resulted in 
the underestimation of the actual impact of exposure 
to asthma-exacerbating environments. Second, demo-
graphic factors (such as age, gender, and sex) and socio-
economic conditions (such as occupation, income level, 
and educational attainment) were not considered in this 
study because such information was unavailable. Addi-
tional studies are warranted to consider such factors in 
modeling to increase the accuracy.

Conclusions
This study is the first to analyze the association between 
outpatients and ER patients with asthma and 18 environ-
mental factors, including air pollutants, weather condi-
tions, pollen, and influenza, in South Korea. Additionally, 
it proved the relative and quantitative importance of 
all 18 factors in terms of asthma exacerbation. Models 
with various hyperparameter values were evaluated to 
optimize the deep learning algorithm. With the opti-
mal hyperparameters, we found that LSTM was the best 
model for predicting patients with asthma among the 
eight algorithms studied. It can model nonlinear lagged 
relationships with interactions between features without 
causing multicollinearity and overfitting problems. From 
feature importance analysis, we found out that influenza 
and pine pollen were the two most important factors 
exacerbating asthma in outpatients and ER patients.
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