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Deep learning–radiomics 
integrated noninvasive detection 
of epidermal growth factor 
receptor mutations in non‑small 
cell lung cancer patients
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This study focused on a novel strategy that combines deep learning and radiomics to predict 
epidermal growth factor receptor (EGFR) mutations in patients with non‑small cell lung cancer 
(NSCLC) using computed tomography (CT). A total of 1280 patients with NSCLC who underwent 
contrast‑enhanced CT scans and EGFR mutation testing before treatment were selected for the final 
study. Regions of interest were segmented from the CT images to extract radiomics features and 
obtain tumor images. These tumor images were input into a convolutional neural network model 
to extract 512 image features, which were combined with radiographic features and clinical data 
to predict the EGFR mutation. The generalization performance of the model was evaluated using 
external institutional data. The internal and external datasets contained 324 and 130 EGFR mutants, 
respectively. Sex, height, weight, smoking history, and clinical stage were significantly different 
between the EGFR‑mutant patient groups. The EGFR mutations were predicted by combining the 
radiomics and clinical features, and an external validation dataset yielded an area under the curve 
(AUC) value of 0.7038. The model utilized 1280 tumor images, radiomics features, and clinical 
characteristics as input data and exhibited an AUC of approximately 0.81 and 0.78 during the primary 
cohort and external validation, respectively. These results indicate the feasibility of integrating 
radiomics analysis with deep learning for predicting EGFR mutations. CT‑image‑based genetic testing 
is a simple EGFR mutation prediction method, which can improve the prognosis of NSCLC patients and 
help establish personalized treatment strategies.

Lung cancer is classified as non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) based on the 
size and shape of the tumor, and NSCLC accounts for approximately 81% of all lung  cancers1. Currently, various 
effective targeted therapies have been developed for NSCLC. However, such targeted therapies are more effective 
for patients with detectable gene mutations; thus, gene mutation tests are essential for patients with NSCLC. 
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Epidermal growth factor receptor (EGFR) mutations are typically observed in patients with NSCLC and are 
found in approximately 50% of  adenocarcinomas2,3.

EGFR is a signal transduction protein that regulates the growth and division of cells. When the DNA sequence 
inside the gene is mutated, the signal transduction pathway can function abnormally, resulting in a rapid prolif-
eration of cancer cells and tumor  formation4. Therefore, early detection of EGFR mutations is crucial to improve 
the prognosis of NSCLC patients and select the right treatment to extend their life  expectancy5.

Typically, in EGFR mutation tests, the peptide nucleic acid (PNA)-mediated polymerase chain reaction 
(PCR) clamping method, which requires tumor tissue samples, is  used6. However, through these gene mutation 
tests, we can only observe a portion of the tumor, and therefore the overall heterogeneity of the tumor cannot 
be determined. Moreover, a biopsy may increase the risk of  metastasis7, and limitations, such as technical dif-
ficulties and high costs, further impede the applicability of PNA-mediated PCR clamping EGFR tests. Therefore, 
a noninvasive and simple test method should be developed to overcome the limitations of existing  methods8.

Medical imaging has emerged as a powerful tool because of its ability to analyze the overall shape and het-
erogeneity of a carcinoma. Medical imaging techniques facilitate real-time and noninvasive image acquisition 
throughout the treatment process. In addition, the acquired images contain both basic anatomical and physi-
ological information, as well as precise genetic  information9. In this study, we developed a novel deep learning 
and radiomics integrated method to predict the EGFR mutations in NSCLC patients. Radiomics features were 
extracted from pretreatment contrast-enhanced computed tomography (CT) images of NSCLC patients, and 
subsequently, these extracted features and tumor images were employed to construct a predictive model.

Results
The clinical characteristics of the internal and external datasets, which contained 324 and 130 EGFR mutants, 
respectively, used in this study are summarized in Table 1. In both the internal and external datasets, the sex, 
height, weight, smoking history, and clinical stage of the patients in the EGFR mutant group were significantly 
different from those of the patients in the EGFR wild-type group.

The prediction results of the classification models obtained using various input data were compared to derive 
an optimal model that can classify the EGFR mutant and EGFR wild-type patient groups. The model was trained 
using a fivefold cross-validation, and the internal validation results were obtained using a hold-out internal test 
set consisting of Ajou University Medical Center (AJMC) and Chungnam National University Hospital (CNUH) 
data. External validation results were obtained using the Inha University Hospital (INHA) dataset. The final 
prediction is calculated by averaging the predictions from each fold’s model.

The EGFR mutations were predicted by combining the extracted radiomics and clinical features, and the 
AUC values on the internal and external validation datasets were approximately 0.73 and 0.70, respectively, as 
shown in Table 2. The highest predicted results were yielded by the model trained using the acquired tumor 
images, radiomics features, and clinical data. The prediction results of all models are listed in Table 3, which 
indicates that Multimodality EfficientNet b7 achieved AUC values of approximately 0.81 and 0.78 in internal 
and external verifications, respectively. This external verification AUC of 0.78, which is even higher than that 
of the model combining radiomics and clinical features (AUC = 0.73) (Fig. 4), indicates that the Multimodality 
EfficientNet b7 model exhibited the highest predictive power. The average and standard deviation of each fold 
model performance are in Table 4.

Discussion
In this study, EGFR mutations were predicted using a deep learning and radiomics combined technique in which 
contrast-enhanced CT images and clinical data of NSCLC patients obtained before treatment were provided as 
input to the deep learning model. In addition, the prediction results of different models were compared to identify 
the model with the highest prediction and generalization performance. The performance of the predictive model 

Table 1.  Clinical characteristics.

Clinical characteristics

Internal dataset (n = 847) External validation dataset (n = 433)

EGFR wild type (n = 523) EGFR mutant (n = 324) p EGFR wild type (n = 303) EGFR mutant (n = 130) p

Sex 0.00 0.00

 Male 399 213 242 46

 Female 124 111 61 84

Age (mean) 71.41 69.08 0.00 72.08 69.75 0.03

Height (mean) 163.39 158.66 0.00 163.34 158.04 0.00

Weight (mean) 60.94 58.89 0.00 62.18 59.91 0.07

Smokers 268 68 0.00 190 30 0.00

Family history 13 16 0.09 71 30 1.00

Stage 0.00 0.00

 1 185 157 83 53

 2 76 30 39 11

 3 114 28 81 15

 4 148 109 100 52
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was evaluated using 433 validation set data points and 170 test data points obtained from 1280 NSCLC patients. 
This study implemented data augmentation, transfer learning, and cross-validation to account for differences in 
data characteristics between hospitals. The predictive model was trained on the training data through fivefold 
cross-validation, and the performance of the predictive model was evaluated using 433 hold-out internal test 
set data points and 170 external test set data points that were not used for training. The predictive model based 
on combining radiomics features, clinical data, and tumor images obtained AUC values of approximately 0.81 
and 0.78 in internal and external validation, respectively. By contrast, the model based on clinical and radiomics 
features obtained AUC values of 0.73 and 0.70 in internal and external validation, respectively. Therefore, the 
model that combined clinical data, radiomics features extracted from the CT images, and tumor images achieved 
the best EGFR mutation prediction performance. These results suggest that a hybrid radiomics model combining 
deep learning with clinical and radiomics features is a simple and noninvasive tool for classifying EGFR muta-
tions. Existing EGFR mutation tests are expensive and time-consuming, and the reliability and reproducibility 
of the test results may vary depending on the experimental instrument and conditions. Mutation profiling after 
biopsy or surgical resection has become a standard and informative medical procedure. However, the potential 
for molecular testing is significantly limited due to issues such as repetitive tumor sampling, challenging tissue 
accessibility, difficulties in determining mutational status due to poor DNA quality, and similar  factors10–12.

CT-image-based genetic testing is a simple EGFR mutation prediction method providing reproducible results 
and facilitates the early detection of gene mutations, which can improve the prognosis of NSCLC patients and 
help establish personalized treatment strategies. Thus, this CT-image-based genetic testing method can be com-
bined with deep learning models and used as a non-knowledge-based clinical decision system (CDSS)13. Such 
a non-knowledge-based CDSS can support real-time and rapid decision-making owing to its ability to learn 
data features and detect new information or  patterns13. However, these non-knowledge-based CDSSs cannot 
directly understand the logic of artificial intelligence and are not widely implemented in clinical practice owing 
to insufficient  data14. Therefore, a method for evaluating and verifying the reliability of artificial intelligence 
models should be developed.

Since 2012, radiomics has been applied in oncology to characterize tumor heterogeneity in medical  images15,16. 
Radiomics extracts quantitative features from medical images and analyzes them to support diagnosis and 

Table 2.  Radiomics-clinical model results.

Internal validation External validation

Accuracy 0.6824 0.6443

Precision 0.6061 0.4423

Recall 0.5882 0.7077

F1 score 0.6674 0.6264

AUC 0.7370 0.7038

Table 3.  Multimodality model results.

Multimodality EfficientNet b7 Multimodality ResNet34 Multimodality DenseNet 264

Internal validation External validation Internal validation External validation Internal validation
External 
validation

Accuracy 0.7941 0.7644 0.7588 0.7413 0.7765 0.7067

Precision 0.7018 0.5986 0.6393 0.5592 0.6562 0.5080

Recall 0.6897 0.6538 0.6724 0.6538 0.7241 0.7808

F1 score 0.7700 0.7266 0.7350 0.7055 0.7571 0.6840

AUC 0.8059 0.7760 0.7909 0.7679 0.7934 0.7802

Table 4.  Mean and standard deviation of 5-fold cross-validation results. These are the average and standard 
deviation of the performance of each fold model.

Multimodality EfficientNet b7 Multimodality ResNet34 Multimodality DenseNet 264

Internal validation External validation Internal validation External validation Internal validation
External 
validation

Accuracy 0.7153 ± 0.0188 0.7035 ± 0.0283 0.7306 ± 0.0136 0.7109 ± 0.0125 0.7059 ± 0.0268 0.6915 ± 0.0247

Precision 0.6488 ± 0.0224 0.5071 ± 0.0356 0.6886 ± 0.0172 0.5170 ± 0.0173 0.6216 ± 0.0669 0.4922 ± 0.0269

Recall 0.3586 ± 0.0934 0.7062 ± 0.0225 0.3897 ± 0.0876 0.6185 ± 0.0870 0.3414 ± 0.0854 0.7292 ± 0.0171

F1 score 0.6308 ± 0.0441 0.6784 ± 0.0246 0.6531 ± 0.0402 0.6716 ± 0.0157 0.6184 ± 0.0498 0.6703 ± 0.0220

AUC 0.7977 ± 0.0140 0.7619 ± 0.0168 0.7762 ± 0.0191 0.7446 ± 0.0268 0.7861 ± 0.0097 0.7602 ± 0.0177
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treatments. In particular, a texture analysis of CT images helped distinguish tumor lesions with different his-
topathological characteristics and predict treatment response and patient  survival17. According to previous 
studies, features extracted from CT images of lung cancer patients are associated with gene expression patterns 
and can be utilized to predict EGFR mutation  profiles18–20. Handcrafted radiomics extracts features from an area 
inside a tumor; therefore, it does not consider the surrounding tissues and borders. In addition, radiomics is 
time-consuming and expensive owing to its dependence on accurate tumor boundary annotations. By contrast, 
deep learning-based radiomics does not require accurate tumor boundary annotations and automatically learns 
features from image data. Previous studies have confirmed that EGFR mutations can be predicted by extracting 
high-level abstract features, in addition to low-level visual features of tumors, such as “shape” and “texture,” using 
deep learning-based  techniques8,21. However, deep learning-based radiomics cannot explain the decision-making 
process of a model, and thus its application in the medical field is limited. Recently, a hybrid radiomics method 
integrating the two methods has been reported to overcome this  limitation22. Therefore, the present study focused 
on developing a predictive model combining deep learning with clinical and radiomics characteristics.

According to previous studies, the accuracy of EGFR mutation prediction can be improved by combining 
clinical and radiomics features. Liu et al. predicted EGFR mutations using CT and clinical data of 298 lung 
adenocarcinoma  patients19. The AUC improved from 0.690 to 0.778 when radiomics was added to the clinical 
model. Furthermore, Zhao et al. predicted EGFR mutations by combining radiomics features and deep learn-
ing. The AUC improved from 0.645 to 0.758 when combining radiomics with a deep  learning23. However, the 
authors analyzed only the data of patients with adenocarcinoma, among all the NSCLCs, and further validation 
is required for other lung cancer types. Zhang et al. predicted EGFR mutations by combining clinical features, 
such as age, sex, clinical stage, and histological classification, of NSCLC patients with those extracted from CT 
 images24. The radiomics and clinical feature-integrated predictive model had better prediction accuracy than 
the model that used only clinical features. These previously reported studies suggest that the accuracy of EGFR 
mutation prediction can be drastically increased by combining radiomics characteristics with clinical factors in 
deep learning models.

However, among the clinical factors used in previous studies, tumor sample collection for histological clas-
sification requires biopsy. In addition, the region of interest is manually segmented, which is both cost- and 
time-intensive, and the evaluation criteria may vary according to the empirical judgment of the medical staff. 
Handcrafted radiomics relies on precise tumor boundary segmentation, which is expensive and involves complex 
steps (region segmentation, feature extraction, feature selection, and analysis). In this study, deep learning was 
integrated with radiomics features extracted from CT images and clinical data. Moreover, a predictive model 
was developed using tumor images to simplify the prediction process while considering the surrounding tissues 
and borders. However, the prediction accuracy of hybrid radiomics, combining the radiomics technique and 
deep learning, is still lower than those of existing deep learning models and handcrafted radiomics. Therefore, 
optimizing the combined method using various data and developing an efficient network structure are necessary.

However, we used only the data of NSCLC patients in Korea for our analysis, even though the EGFR mutation 
rate may be affected by race. Thus, verifying this generalization using data from patients from different racial 
backgrounds is required. Furthermore, among all the gene mutations, only EGFR mutations were considered in 
this study. Mutations in genes, such as anaplastic lymphoma kinase and ROS proto-oncogene 1, which are found 
in NSCLC patients, are also associated with cancer development and should be considered in future studies. 
Moreover, the proposed method relies on deep learning algorithms, which do not facilitate interpretation during 
decision-making. In the future, incorporating explainable artificial intelligence (XAI) and other interpretable 
models should be explored to explain the functioning and decision-making processes of the predictive model. 
These XAI and other interpretable models might enhance the reliability of the decision-making process and 
provide  transparency25. In addition, in future research, we plan to use Grad-CAM to determine which regions 
within the images have influenced the classification decisions of the CNN. This study focused on predicting EGFR 
mutations. Although the predictive model in this study had limited performance for actual clinical application, 
it appeared to have higher performance (AUC = 0.805) compared to existing previous studies (AUC = 0.778, 
0.758)19,23. This suggests that hybrid radiomics, which combines clinical features, radiomics, and deep learning, 
may provide a better prediction method for predicting EGFR mutations. The precision of the predictive model 
in this study is low at 0.60. However, in a previous study combining radiomics and deep learning, the precision 
of external validation was 0.53, so the precision was further improved in this  study20. Considering the inherent 
characteristics of deep learning, the performance of the predictive model might be improved by increasing the 
dataset size. Precision is affected by sample size, so further studies within larger populations are needed. This 
would enable the model to learn and generalize a broader spectrum of patterns and  features26. In future work, 
we plan to learn and generalize broader patterns and features through public datasets and various pre-trained 
models.

In conclusion, this study developed a simple and noninvasive method that combines tumor images, radiomics 
features, and clinical data extracted from pretreatment CT scans of NSCLC patients using deep learning models 
to predict EGFR mutations. EGFR mutation increases the risk of cancer recurrence in patients with NSCLC and 
can also be used as an indicator to determine treatment strategies. Therefore, further studies should be conducted 
to improve the accuracy of the proposed model and address the data construction disadvantages.

Methods
Dataset
CT images and clinical data of 5405 patients with lung cancer were retrospectively collected from three domes-
tic hospitals in South Korea, namely the Ajou University Hospital, Inha University Hospital, and Chungnam 
National University Hospital. The dataset was externally validated by the Telecommunications Technology 
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Association of Korea. Figure 1 includes a flowchart describing patient selection. Among these patients, 1280 
individuals with NSCLC, who underwent EGFR mutation testing and had pretreatment CT scans, were selected 
for the final analysis. Among these patients, 1280 individuals with NSCLC, who underwent EGFR mutation 
testing and had pretreatment CT scans, were selected for the final analysis. Clinical data included sex, age, fam-
ily history, clinical stage, height, weight, and tumor location. The collected data consisted of 454 cases of EGFR 
mutations and 826 cases of wild-type EGFR without mutations. At each of the participating hospitals, namely, 
Ajou University Hospital, Chungnam National University Hospital, and Inha University Hospital, Institutional 
Review Board (IRB) approval was obtained, and the approval numbers are as follows: Ajou University Hospi-
tal (AJOUIRB-DB-2023-196), Chungnam National University Hospital (CNUH-IRB-2022-10-026), and Inha 
University Hospital (INHA-IRB-2022-08-024-000). Furthermore, the requirement for informed consent from 
all participants was waived by the IRB at Ajou University Hospital, Chungnam National University Hospital, 
and Inha University Hospital because of the retrospective nature of this study. All methods were performed in 
accordance with the Declaration of Helsinki.

To preprocess the clinical data, first, categorical variables, such as gender, family history, and smoking history, 
were converted into binary variables via one-hot encoding. In the case of sex, male and female were coded as 1 
and 0, respectively, while family history and no family history were coded as 1 and 0, respectively. Furthermore, 
missing values were replaced with the median of the variable and normalized by min–max scaling. Subsequently, 
to preprocess the CT images (which had a depth of 16 bits, and the pixel value was normalized between 0 and 
1 for the generalization performance of the model), modality and value-of-interest (VOI) lookup tables (LUTs) 
and histogram flattening were applied. The modality and VOI LUTs were employed to determine the changes 
in brightness, contrast, and size data obtained using different CT imaging equipment and protocols, and histo-
gram flattening enabled contrast enhancement and clarity. Furthermore, the data obtained from the Chungnam 
National University Hospital and Ajou University Hospital data were used for training and the internal validation 
of the proposed model, respectively, whereas those obtained from the Inha University Hospital were used as the 
external validation dataset (Fig. 2).

Radiomics feature extraction
To segment the tumor regions visible in the original CT images, a fully automatic segmentation technique was 
implemented using a universal network (i.e., U-Net) model pretrained using the Lung-PET-CT-Dx dataset, 
which was obtained from the Cancer Imaging  Archive27. The automatically segmented lung tumor masks were 
saved as binary images and used in the analysis. In this study, we used the PyRadiomics module of Python to 
extract the first-order statistics and secondary statistical features, namely shape (3D), shape (2D), gray level co-
occurrence matrix, gray level size zone matrix, gray level run length matrix, neighboring gray-tone difference 
matrix, and gray level dependence matrix. In total, 107 radiomics features were extracted and normalized by 
min–max scaling.

Development of deep learning model
To obtain the CT image, a 224 × 224 tumor area was cut and converted into a 112 × 112 area. Subsequently, 64 
images of the central tumor were captured. These tumor images were input into convolutional neural network 
(CNN) models, i.e., EfficientNet b7, ResNet 34, and DenseNet264. EfficientNet uniformly scales all dimensions 
of a network, including depth, width, and resolution, to improve accuracy and  efficiency28. In this study, the 

Figure 1.  Diagram of the patient selection process.
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largest model in the EfficientNet series, EfficientNet b7, was employed. ResNet34 is a model that addresses the 
problems of gradient vanishing and exploding by introducing the Residual Network (ResNet)  technique29. Lastly, 
DenseNet incorporates the concept of dense connectivity, enabling each layer within the network to be directly 
connected to the output of the previous  layer30. The model was trained through transfer learning, utilizing pre-
trained model weights based on the ImageNet  dataset31. The hyperparameters were set as follows: the optimizer 
employed was AdamW (Adam with Weight Decay), with a learning rate of 0.00001, and the scheduler used was 
CosineAnnealingLR (Cosine Annealing Learning Rate Scheduler). The CNN models were used to extract the 
image features. The model with the highest performance was selected to construct the predictive model. Radi-
omics features and clinical characteristics were converted into 512 dimensions through linear transformation, 
and then BatchNorm (Batch Normalization) and Dropout were applied.

The tumor image, provided as input to the CNN model, was 3D augmented via image rotation, change in 
scale position, noise addition (random noise), and blurring to prevent overfitting by the model and improve its 
generalization performance. The image features were extracted by combining the linearly transformed radiomics 
and clinical features using a multilayer perceptron. A 1024-dimensional vector was input into the model, while 
a linear layer and a layer subjected to the hyperbolic tangent (tanh) function were used as the hidden layers. 
After passing through the hidden layer, the final predicted output was processed by the linear layer to classify the 
EGFR mutant and EGFR wild-type cancers (Fig. 3). Furthermore, to compare the results based on input data, a 
deep learning model was also constructed using only radiomics and clinical features.

Figure 2.  Validation and test structure of the NSCLC dataset for deep learning. INHA, Inha University 
Hospital; AJMC, Ajou University Medical Center; CNUH, Chungnam National University Hospital.

Figure 3.  Overview of the deep learning architecture.
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Statistical analyses
We evaluated the performance of the classification models using objective evaluation metrics, including speci-
ficity, precision, sensitivity, F1-score, and accuracy, whose mathematical foundations are based on the true 
positive (TP), true negative, false negative, and false positive (FP) values of the models’ predictions. In addition, 
we used the “area under the curve” (AUC) of the receiver operating characteristic (ROC) curve to evaluate the 
binary-classification performance of the deep learning algorithm. To plot the ROC curve, we calculated the TP 
rate (sensitivity) and FP rate (1-specificity) with different predicted probability thresholds and then determined 
the AUC values (Fig. 4).

All the statistical analyses were performed on Ubuntu 18.04 with Pandas (version 1.5.3), Scikit-learn (version 
1.2.1), NumPy (version 1.23.5), Matplotlib (version 3.6.3), and PyTorch (version 1.13.1) using the OpenCV-
python (version 4.7.0.68) package. The model structures were developed on a graphics processing unit server 
(450.51.05) with NVIDIA Tesla V100 (32 GB * 4) and Xeon Gold 6248 (Intel).

Ethical statement
The Institutional Review Board of Ajou University Hospital approved this study (IRB No. AJOUIRB-
DB-2023-196). Further, informed consent from all participants was waived by the IRB because of the retrospec-
tive nature of this study.

Data availability
The datasets generated and/or analyzed in this study are available from the corresponding author upon reason-
able request.

Code availability
To train the classification model in this study, we used the publicly available pytorch training script available at 
https:// github. com/ Vemun dFred riksen/ LungT umorM ask.
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