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Aims Although overt hyperthyroidism adversely affects a patient’s prognosis, thyroid function tests (TFTs) are not routinely
conducted. Furthermore, vague symptoms of hyperthyroidism often lead to hyperthyroidism being overlooked. An elec-
trocardiogram (ECG) is a commonly used screening test, and the association between thyroid function and ECG is well
known. However, it is difficult for clinicians to detect hyperthyroidism through subtle ECG changes. For early detection
of hyperthyroidism, we aimed to develop and validate an electrocardiographic biomarker based on a deep learning model
(DLM) for detecting hyperthyroidism.

Methods
and results

This multicentre retrospective cohort study included patients who underwent ECG and TFTs within 24 h. For model
development and internal validation, we obtained 174 331 ECGs from 113 194 patients. We extracted 48 648 ECGs
from 33 478 patients from another hospital for external validation. Using 500 Hz raw ECG, we developed a DLM
with 12-lead, 6-lead (limb leads, precordial leads), and single-lead (lead I) ECGs to detect overt hyperthyroidism. We
calculated the model’s performance on the internal and external validation sets using the area under the receiver oper-
ating characteristic curve (AUC). The AUC of the DLM using a 12-lead ECG was 0.926 (0.913–0.94) for internal valid-
ation and 0.883(0.855–0.911) for external validation. The AUC of DLMs using six and a single-lead were in the range of
0.889–0.906 for internal validation and 0.847–0.882 for external validation.

Conclusion We developed a DLM using ECG for non-invasive screening of overt hyperthyroidism. We expect this model to con-
tribute to the early diagnosis of diseases and improve patient prognosis.
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Introduction
Hyperthyroidism is a global healthcare issue, and the
worldwide prevalence of overt hyperthyroidism ranges from
0.2% to 1.3%.1,2 Untreated hyperthyroidism increases the

risk of morbidity, including cardiac arrhythmia, stroke, and
heart failure, and causes emergent life-threatening complications
such as a thyroid storm.3,4 Early and effective treatment of
hyperthyroidism can prevent irreversible complications and
mortality.3,4
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Because, sometimes, the symptoms of hyperthyroidism are vague, it
is challenging to detect hyperthyroidism based only on the patient’s
medical history and a physical examination.1 The first-line test for diag-
nosing hyperthyroidism is a thyroid function test (TFT), including
thyroid-stimulating hormone (TSH), free thyroxine(fT4), and tri-
iodothyronine (T3).5 However, TFT is an invasive test requiring blood
sampling. In addition, TFT requires expensive infrastructure, including
analysis devices and biochemical reagents, and is difficult to use in low-
income countries that have a high prevalence of undiagnosed thyroid
disease. An electrocardiogram (ECG), in contrast, is an inexpensive,
non-invasive test that is one of the most used diagnostic tests and
can be conducted using various wearable and lifestyle devices.

Several studies have focused on thyroid function and ECG changes
such as sinus tachycardia, increased atrial arrhythmia, and changes in
the QT interval.6–8 However, no studies have attempted to detect
hyperthyroidism using ECG. Recently, several deep learning models
(DLMs) that predict the status of patients using only ECG have
been developed.9,10 If hyperthyroidism screening is possible only
with non-invasive ECG without a separate blood test, early diagnosis
and intervention can be facilitated. Moreover, if this model can detect
even minute changes in the ECG of pre-hyperthyroidism, this model
can be used not only to detect but also to predict future hyperthy-
roidism, which will improve the patient’s prognosis.

For this purpose, we aimed to develop a DLM for detecting hyper-
thyroidism using an ECG and validated its performance, robustness,
and value as a biomarker for future hyperthyroidism.

Methods

Data preparation
We conducted a retrospective multicentre cohort study to develop and
validate a DLM that detects hyperthyroidism using ECG. As shown in
Figure 1, the study population included patients who visited the hospital
and underwent at least one standard 12-lead ECG and at least one TFT
within 24 h before and after the index ECG.

To develop the DLM and conduct internal performance tests, we ob-
tained eligible patient data from a tertiary hospital in Republic of Korea
(Ajou University Medical Center, AUMC) from 1 January 1994 to 31
December 2020. To validate the robustness of the developed DLM, we
conducted an external performance test using a dataset from a
community-based secondary hospital (Incheon Sejong Hospital, ISH)
from 1 March 2017 to 31 May 2021. The two hospitals exist in geograph-
ically, administratively separate areas, and belong to different foundations.

In both hospitals, we obtained the TFT values, age, and sex from elec-
tronic medical records and extracted ECG data with a sampling rate of
500 Hz that was stored in the MUSE Cardiology Information System
(GE Healthcare, Wisconsin, USA). All patients whose sex or age data
were missing were excluded. Less than 0.1% of the patients were ex-
cluded under the above conditions.

The study was approved by the institutional review boards (IRBs) of
AUMC (AJIRB-MED-MDB-21-362) and ISH (ISH-2021-0282). The IRBs
waived the need for informed consent because of the retrospective na-
ture of the study, the fully anonymized dataset applied, and minimal risk
to the patient.

Endpoint
The study endpoint was overt hyperthyroidism. Overt hyperthyroidism
was defined as free T4 above the normal range and TSH levels below the

normal range in radioimmunoassay.5 However, TFT measurement values
are sensitive to equipment errors, and thus, the existing hyperthyroidism
study applied a different normal range for each hospital and equip-
ment.8,11 According to references, we defined the normal range based
on the recommended range from the Department of Diagnostic
Laboratory Medicine of each hospital. The detailed normal ranges for
each hospital and equipment are described in Supplementary material
online, S1, and the distribution of TSH and T4 by equipment is illustrated
in Supplementary material online, S2.

Model development
We divided the AUMC dataset into development, model tuning, and in-
ternal validation datasets in a 7:1:2 ratio based on the patient. In the mod-
el development and tuning dataset, all multiple ECG–TFT pairs for each
patient are included in the study. However, in the internal and external
validation sets, we randomly selected only one ECG–TFT pair per pa-
tient. We developed a model on the development dataset and tested
it on an internal validation set. To prove the robustness of the DLM,
we performed an external validation on the ISH dataset. We illustrated
the study flow chart as Figure 1.

To maximize the utility of the DLM in various settings, we used only
12-lead ECG waveform data as a predictor variable in the DLM.
Furthermore, for applicability in the wearable environment, we also de-
veloped a DLM that uses six partial limb leads (lead I, II, III, aVL, aVR, and
aVF), six precordial leads (V1, V2, V3, V4, V5, and V6), or a single-lead
(lead I) ECG.

We removed baseline wander noise ,0.5 Hz using a Butterworth
pass filter and normalized the data using standard normalization.12

Because of the frequent noise at the start and end, we removed the
data from both sides of the ECG by 0.9 s to create 4096-size signal
data and used it as an input for the DLM.

Figure 2 shows the architecture of the DLM. We utilized six residual
blocks of ResNet.13 Each residual block consists of a convolutional neural
network, batch normalization, ReLU activation function, and a dropout
layer. Detailed information about the model structure, such as hyper-
parameters, is provided in Supplementary material online, S3.

After model development, we applied gradient-weighted class activa-
tion mapping (gradCAM).14 Using the gradient of weights from the final
convolutional layer of the model, gradCAM explains the model by noti-
fying which part of the ECG contributes to predictions and making the
importance of each area into a visual representation.

Performance evaluation
To prove the performance of the DLM, we compared the probability
of the model with the presence of hyperthyroidism in the internal
and external validation datasets. Therefore, we used the area under
the receiver operating characteristic curve (AUC). In addition, we
calculated the sensitivity, specificity, positive predictive value, and
negative predictive value with a cut-off point from Youden’s J statistics
in the development dataset.15 The 95% confidence intervals of the AUC
were determined using the Sun-Su optimization of the De-long
method.16

Sensitivity analysis
To prove the robustness of the DLM, we conducted several sensitivity
analyses.

We divided subgroups according to gender and age. Then, we observed
the model performance for each group. The criteria for the subgroups
were male and female (sex) and –40, 40–50, 50–60, 50–60, 60–70, and
70– (age).
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Since our dataset consists of TFTs obtained from different equipment,
we validated that the model is robust regardless of the radioimmunoassay
equipment. So, we divided the internal and external validation dataset by
equipment (Roche Elecsys, Siemens ADVIA, Architect i2000SR), and cal-
culated model performance for each group.

In addition, the performance of a DLM is sensitive to the distribution of
the dataset. To validate the robustness of our model, we sampled the data
to obtain a uniform distribution for TSH and T4 levels. We divided the en-
tire data set into 10, 25, 50, and 100 groups based on TSH and T4 levels.
Finally, the AUCs of the DLM were recalculated. We bootstrapped 1000
times to calculate the averageAUC and the confidence interval of the AUC.

Also, for validating the robustness of the model in patients without
symptoms, we extracted ECG–TFT pairs from the internal validation da-
taset which were measured in regular national health examinations with-
out specific medical complaints. Then, we observed the model
performance in the health examination subgroup.

We also tested the robustness of DLM from the effects of the
anti-thyroid agents (ATAs) such as methimazole, carbimazole, and pro-
pylthiouracil. We calculated DLM performances for each subgroup
with a different drug history. We confirmed the change in model per-
formance by obtaining a subgroup from the internal validation dataset ex-
cluding patients treated with an ATA within 3 months before TFT

measurement and a subgroup excluding patients with any ATA prescrip-
tion record before TFT measurement

Also, we checked whether the ATA itself affects the predicted prob-
ability of the DLM.We selected patients with overt hyperthyroidism (ini-
tial TFT) in the internal validation set. And we extracted patients who did
not have a drug record before initial TFT and had a drug prescription,
follow-up ECG–TFT pair within one to 12 months after initial TFT. If
there are multiple follow-up pairs, the pair closest to the initial TFT
was selected. Then, we illustrated the change in the predicted probability
of the DLM at initial and follow-up.

Sub-analysis of model
We hypothesized that the ECGs have subtle changes in the pre-
hyperthyroidism period and that the DLM can predict the development
of overt hyperthyroidism by detecting such vague changes. To prove this
hypothesis, we conducted a sub-analysis of patients with initial normal
TFT and follow-up TFT, at least 4 weeks apart from the initial TFT,
from among the internal validation datasets.

We used Youden’s J statistics with the development dataset to deter-
mine cut-off points,15 defined a group with a probability of the DLM
greater than or equal to the cut-off as a high-risk group and defined

Figure 1 Study flow chart. To develop the deep learning model and conduct internal performance tests, we obtained patient data from a tertiary
teaching hospital (Ajou University Medical Center, Hospital A) in Republic of Korea, from 1 January 1994 to 31 December 2020.We also conducted
an external performance test using a dataset from a community-based secondary hospital (Incheon Sejong Hospital, Hospital B) from 1 March 2017
to 31May 2021. The study population included patients who visited the hospital and underwent at least one standard 12-lead electrocardiogram and
at least one thyroid function test within 24 h before and after the index electrocardiogram. In both hospitals, we obtained thyroid function test
values, age, sex, and digitally stored electrocardiogram data.We excluded 21 and 7 patients, respectively, whose sex or age information was missing.
As a result, 113 194 and 33 478 patients in Hospitals A and B, respectively, were included. For development, tuning, and internal validation, we di-
vided the data from Hospital A by the patient (7:1:2).
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others as a low-risk group. According to our theory, there were more
ECG changes in the high-risk group, even in patients with normal thyroid
function. Accordingly, the future overt hypertension incidence rate
should be higher than that in the low-risk group.

Using Kaplan–Meier estimation, we analysed whether patients in the
high-risk and low-risk groups developed new overt hyperthyroidism
within 36 months and compared the statistical differences between the
two survival curves using a log-rank test.

Figure 2 Architecture of deep learning model for detecting hyperthyroidism. We used only 12-lead electrocardiogram waveform data as a pre-
dictor variable in the deep learning model. We removed baseline wander noise,0.5 Hz for preprocessing using a Butterworth pass filter and nor-
malized the data by standard normalization.12We trimmed both sides by 0.9 s to remove noise at the start and end of the electrocardiogram. Finally,
we used a 4096-size vector as the input for the deep learning model. We utilized six residual blocks of the ResNet.13 Each residual block consists of a
convolutional neural network, batch normalization, ReLU activation function, and a dropout layer. The filter size was set to 21. Six residual blocks
were used, and the length of the input was reduced by half every time the three residual blocks passed. Each electrocardiogram lead had a different
ResNet model. At the end of the residual block, the outputs were channel-wise average pooled and concatenated with all outputs from each lead.
Using the concatenated output, dense layers finally predict the probability (0–1) of overt hyperthyroidism. The above hyperparameters were
selected through GridSearch.
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Statistical analysis
For baseline characteristics, continuous variables are presented as mean
values and standard deviations and compared using the unpaired
Student’s t-test or Mann–Whitney U test. Categorical variables were de-
scribed as percentages and were compared using the χ2 test.

Neurokit2 0.1.4, Pytorch 1.8, and Python 3.6 were used for signal pre-
processing and DLM development. ROCR and R 4.0.3 were used to visu-
alize the results.

Results

Baseline characteristics
The eligible populations were 113 215 and 33485 patients with AUMC
and ISH, respectively. We excluded patients 21 and 7 from AUMC and
ISH, respectively, because of missing clinical information. As a result,
113 194 patients with AUMC and 33 478 patients with ISH were in-
cluded in the study. Among them, 2277 and 168 patients had hyperthy-
roidism, respectively. After the AUMC dataset was randomly divided in
a ratio of 7:1:2 by the patient, the DLM was developed using the devel-
opment and tuning dataset, which included 139899 ECGs of 90 554
patients from AUMC. The internal performance test was conducted
using the internal validation dataset of 22 640 ECGs from 22 640 pa-
tients from the AUMC. The external performance test was conducted
using the external validation dataset containing 33 478 ECGs from 33
478 patients with ISH. A detailed study flow chart is shown in Figure 1.

The baseline characteristics of the development cohort (AUMC,
n= 113 194) and external validation cohort (ISH, n= 33 478) used
in this study are shown in Table 1. Sex, age, and prevalence of hyper-
thyroidism showed statistically significant differences between hospi-
tals (P, 0.001). Patients with hyperthyroidism had more tachycardia
and prolonged QT intervals (P, 0.001). Patients with hyperthyroid-
ism had more rightward axis deviation of the P, R, and T wave axis

and shorter QRS duration, from the beginning of the Q wave to
the end of the S wave (P, 0.001).

Performance of deep learning model
During the internal and external validation tests, the AUCs of the
DLM for the detection of hyperthyroidism using 12-lead ECG
were 0.926 (0.913–0.94) and 0.883 (0.855–0.911), AUCs of the
DLM using six limb leads were 0.906 (0.89–0.923) and 0.867
(0.835–0.899), and AUCs of the DLM using six precordial leads
were 0.899 (0.881–0.918) and 0.882 (0.854–0.909), respectively.
The lowest-performing DLM was a single-lead model with an AUC
of 0.889 (0.873–0.906) for internal validation and 0.847 (0.821–
0.874) for external validation. The detailed performance of the
DLM for detecting hyperthyroidism using the 12-, 6-, and single-lead
ECGs is shown in Figure 3.
After model development, we applied gradCAM to identify the

ECG regions that were critical for model prediction. In the activation
map, the DLM focused on the area between the T and R peaks to
determine the presence of overt hyperthyroidism. A detailed figure
of the gradCAM is depicted in Supplementary material online, S4.

Sensitivity analysis of deep learning
model
In the sensitivity analysis of demographics, under 60 years of age, the
model showed an AUC of 0.873 (0.761–0.985) or higher in all age
groups and genders. The lowest model performance for all genders
and age groups was for males aged 60–69 years. The model perform-
ance for all subgroups is described in Supplementarymaterial online, S5.
In the sensitivity analysis of TFT equipment, the DLM shows AUC

0.926 (0.908–0.945) in the dataset from Roche Elecsys equipment,
AUC= 0.895 (0.868–0.922) in Siemens ADVIA dataset, and
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Table 1 Baseline characteristics of cohorts

Characteristic Development and internal validation dataset
n=113 194

External validation dataset
n=33478

P

Non-hyperthyroidism Hyperthyroidism Pa Non-hyperthyroidism Hyperthyroidism Pb

Study population, n (%) 111 195 (98.2) 1999 (1.8) 33 313 (99.5) 165 (0.5) ,0.001

Age, year, mean (SD) 43.95 (13.41) 40.64 (14.38) ,0.001 55.37 (15.48) 51.51 (14.93) 0.001 ,0.001

Male, n, (%) 56 808 (51.1) 638 (31.9) ,0.001 15 960 (47.9) 56 (33.9) ,0.001 ,0.001

Heart rate, b.p.m. (%) 66.47 (12.75) 89.37 (19.61) ,0.001 70.89 (16.20) 97.59 (24.19) ,0.001 ,0.001

PR interval, ms, mean (SD) 158.46 (23.63) 145.83 (25.51) ,0.001 166.97 (26.47) 151.08 (27.45) ,0.001 ,0.001

QRS duration, ms, mean

(SD)

93.07 (12.00) 86.24 (11.37) ,0.001 94.36 (15.02) 89.67 (13.46) ,0.001 ,0.001

QTc interval, ms, mean

(SD)

418.46 (23.42) 427.41 (32.29) ,0.001 433.44 (31.63) 442.88 (31.23) ,0.001 ,0.001

P axis, mean (SD) 47.38 (23.68) 50.37 (24.46) ,0.001 44.34 (27.65) 48.93 (31.43) 0.045 ,0.001

R axis, mean (SD) 49.42 (32.13) 54.86 (28.28) ,0.001 40.51 (39.55) 46.27 (33.08) 0.062 0.002

T axis, mean (SD) 39.83 (23.53) 46.32 (25.33) ,0.001 39.38 (38.21) 47.95 (47.98) 0.004 ,0.001

Hospital A denotes Ajou University Medical Center (AUMC); Hospital B denotes Incheon Sejong Hospital (ISH).
aThe alternative hypothesis for this P-value was that there was a difference between hyperthyroidism and overt hyperthyroidism.
bThe alternative hypothesis for this P-value was that there was a difference between Hospital A (the development and internal validation data group) and Hospital B (external
validation group) for each variable.

260 B. Choi et al.

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac013#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztac013#supplementary-data


AUC= 0.883 (0.855–0.911) in the dataset from the Architect
i2000SR, external validation dataset. We illustrated performances di-
vided by equipment as Supplementary material online, S6.

Also, when a uniform distribution was created based on TSH, the
mean AUC ranged from 0.913 to 0.925 in the internal validation da-
taset and from 0.874 to 0.882 in the external validation dataset.
When a uniform distribution was achieved based on T4, the mean
AUC ranged from 0.869 to 0.925 in the internal validation dataset
and from 0.867 to 0.883 in the external validation dataset. We
illustrated performances of DLM in uniform distribution as
Supplementary material online, S7.

When we tested our model in the dataset from the regular health
examination (n= 155), the DLM shows AUC= 0.869 (0.636–0.999).
We illustrated performances of DLM as below and added figure as
Supplementary material online, S8.

In the analysis of subgroups according to drug use history, the sub-
group with 22 396 patients excluding patients who were using ATA
showed AUC 0.918 (0.901–0.934). The model maintained a high
performance of 0.919 (0.902–0.935) in the dataset except for 244
patients who had any ATA history. We illustrated performances of
DLM in patients with a different drug history as Supplementary
material online, S9.
When we inspect the change of predicted probability after admin-

istration of ATA, the overall predicted probability of the model was
decreased after using ATA (0.890–0.485). However, even with the
prescription of ATA, if overt hyperthyroidism remains, the model
probability is not reduced (0.875–0.875). Anti-thyroid agent admin-
istration itself without TFT change does not affect predicted model
probability. We illustrated the change of predicted probability after
ATA as Supplementary material online, Figure S10.

Figure 3 Performance of deep learning-based model for detecting hyperthyroidism. To maximize the utility of the deep learning model in various
settings, we modified the 12-lead deep learning model to partially lead deep learning model, using only six limb leads (lead I, II, III, aVL, aVR, and aVF),
six precordial leads (V1, V2, V3, V4, V5, and V6), or a single-lead (lead I) electrocardiogram. We validated the developed models using internal val-
idation and external validation sets. The performance metrics were the area under the receiver operating characteristic curve, sensitivity, specificity,
negative predictive value, and positive predictive value. To calculate the sensitivity, specificity, positive predictive value, and negative predictive value,
we calculated the cut-off point using Youden’s J statistics in the development dataset and applied the cut-off point to internal and external datasets.15

The 95% confidence intervals were determined using the Sun-Su optimization of the De-long method.16
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Prediction of hyperthyroidism in normal
thyroid function patients
A sub-analysis was conducted using data from 6800 patients with
normal TFT and follow-up TFT results. Among the sub-analysis pa-
tients, patients were divided into 6323 high-risk and 568 low-risk pa-
tient groups according to the DLM probability. As shown in Figure 4,
30 people in the high-risk group show overt hyperthyroidism, and
145 people in the low-risk group show overt hyperthyroidism. The
incidence rate of overt hyperthyroidism is significantly higher in the
high-risk group (5.28% vs. 2.33%, P, 0.001).

Discussion
Using 113 194 ECG–TFT pairs in a tertiary teaching hospital, we devel-
oped a DLM to predict overt hyperthyroidism and externally validated
themodel using 33478 ECG–TFT pairs in a community-based second-
ary hospital. The performance of the DLM model using 12-lead ECG
showed excellent performance in both internal (AUC 0.926) and

external validations (AUC 0.883). When we limited the input ECG
to the partial lead and performed external validation, consistently
high performance was observed in limb six leads (AUC 0.867), precor-
dial six leads (AUC 0.882), and even in the single-lead model (AUC
0.847). In addition, several sensitivity analyses about demographics,
equipment, distribution, and drug history prove the robustness of
the model. To our knowledge, this study is the first to propose using
a DLM to evaluate overt hyperthyroidism using ECG.
Although the treatment for hyperthyroidism is well established, if

not detected early, it can cause irreversible damage.3,4 Therefore,
early diagnosis through screening tests is necessary. In addition to
screening purposes, repeated monitoring of thyroid function is es-
sential for patients treated with anti-thyroid medicine, radioactive
iodine ablation, or surgical thyroidectomy.17–19 Themost typical pro-
cedure for evaluating thyroid function is TFT.5 However, TFT is inva-
sive because it requires a blood sample. In our study, we developed a
model that predicts hyperthyroidism using only a non-invasive stand-
ard 12-lead ECG. The proposed model demonstrated excellent per-
formance in multicentre data. In addition, the model required only

Figure 4 Cumulative hazard of developing hyperthyroidism in patients with an initially normal. We hypothesized that, even in normal patients, a
high probability of the model could be a biomarker for predicting overt hyperthyroidism. To prove this hypothesis, we conducted a sub-analysis of
6800 patients with initial normal thyroid function test and follow-up thyroid function test, at least 4 weeks apart from the initial thyroid function test,
from among the internal validation datasets. We used Youden’s J statistics with the development dataset to determine cut-off points,15 defined a
group with a probability of deep learning model greater than or equal to the cut-off as a high-risk group and defined others as a low-risk group.
Using Kaplan–Meier estimation, we analysed whether patients in the high-risk (n= 6323) and low-risk groups (n= 568) developed new overt hyper-
thyroidism within 36 months and compared the statistical differences between the two survival curves using a log-rank test. Thirty people in the
high-risk group show overt hyperthyroidism, and 145 people in the low-risk group show overt hyperthyroidism. The incidence rate of overt hyper-
thyroidism is significantly higher in the high-risk group (5.28% vs. 2.33%, P, 0.001).
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ECG, which is one of the most commonly performed diagnostic tests
in hospitals. Because of this, the developed model can be applied
without any additional burden on the patient or practitioner.

The model developed in this study maintains high performance
even in a situation with a partial lead. Recently, several wearable de-
vices supported single-lead ECG measurements, and several models
that detect various health statuses through wearable ECG have been
developed.20–22 As our model also shows good performance using
only a single-lead, it is necessary to validate whether it can be applied
to wearable ECG to enable continuous and non-invasive thyroid
function monitoring.

Sub-analysis shows that the model’s probability can be used as a
biomarker for predicting future hyperthyroidism in patients with
normal thyroid function. Among normal thyroid patients, those clas-
sified as a high-risk group by the model probability had a significantly
higher incidence rate of future overt hyperthyroidism than those in
the low-risk group (5.28% vs. 2.33%, P, 0.001). In the gradCAM
analysis for DLM interpretation, we observed that DLM focused
on the ECG changes known in hyperthyroidism. Accordingly, we in-
fer that the high predicted probability from the model suggests that
the high-risk group has a higher probability of minor thyroid dysfunc-
tion which can be turned into overt hyperthyroidism. However,
DLM’s black box characteristics make that our hypothesis cannot
be convinced, additional research on DLM interpretability in the
ECG part will be required further.

Nevertheless, this study has some limitations. First, the model
trained only in tertiary teaching hospitals may not be robust to di-
verse population groups. To prove the robustness of the model,
we performed an external validation in a community-based second-
ary hospital. Even though the baseline characteristics of the external
validation cohort were significantly different from those of the devel-
opment cohort, model performance remained with minimal degrad-
ation, from AUC 0.926 to 0.883. Second, because the DLM is a black
box, the detailed prediction process of the model is unknown. To
mitigate this, we adopted gradCAM to identify which part of the
ECG the model considered necessary. GradCAM shows that the
model mainly investigates the area between the T and R peaks to pre-
dict hyperthyroidism, which seems to be consistent with ECG
changes known in hyperthyroidism, such as elevated heart rate and
shortening of the PR and QRS interval.6–8 However, gradCAM
only informs about the position of ECG but does not tell why the pos-
ition is essential. Therefore, further studies on explainable ECG DLMs
should be conducted. Also, although the higher predicted probability is
significantly associated with higher overt hyperthyroidism, its role as a
biomarker in ECG in randomized patients is somewhat limited.
Considering our dataset only includes patients who underwent ECG
and TFT, symptoms of patients might have intervened in physicians’
decision on whether to perform the measurement. Although we con-
ducted subgroup analysis in the health examination subgroup to com-
pensate for the above bias and showed that our model maintains high
performance, prospective validation or clinical trial will be required be-
fore the clinical application of the model.

Conclusion
We developed a DLM to detect overt hyperthyroidism using ECG
and a validated model in multiple centres. To our knowledge, this

study is the first to propose a DLM to detect overt hyperthyroidism
using ECG. The model showed excellent performance in both in-
ternal and external validations and showed excellent performance
even when only six or one lead out of 12 electrodes were used.
We anticipate that non-invasive hyperthyroidism screening can be
performed using our model. We expect that this model will contrib-
ute to the early diagnosis of diseases and improve patient prognosis.
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Supplementary material is available at European Heart Journal – Digital
Health.
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