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Abstract
Objectives To assess whether a deep learning-based system (DLS) with black-blood imaging for brain metastasis 
(BM) improves the diagnostic workflow in a multi-center setting.

Materials and methods In this retrospective study, a DLS was developed in 101 patients and validated on 264 
consecutive patients (with lung cancer) having newly developed BM from two tertiary university hospitals, which 
performed black-blood imaging between January 2020 and April 2021. Four neuroradiologists independently 
evaluated BM either with segmented masks and BM counts provided (with DLS) or not provided (without DLS) on a 
clinical trial imaging management system (CTIMS). To assess reading reproducibility, BM count agreement between 
the readers and the reference standard were calculated using limits of agreement (LoA). Readers’ workload was 
assessed with reading time, which was automatically measured on CTIMS, and were compared between with and 
without DLS using linear mixed models considering the imaging center.

Results In the validation cohort, the detection sensitivity and positive predictive value of the DLS were 90.2% (95% 
confidence interval [CI]: 88.1–92.2) and 88.2% (95% CI: 85.7–90.4), respectively. The difference between the readers 
and the reference counts was larger without DLS (LoA: −0.281, 95% CI: −2.888, 2.325) than with DLS (LoA: −0.163, 
95% CI: −2.692, 2.367). The reading time was reduced from mean 66.9 s (interquartile range: 43.2–90.6) to 57.3 s 
(interquartile range: 33.6–81.0) (P <.001) in the with DLS group, regardless of the imaging center.
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Introduction
Brain metastases (BMs) are the most frequent intra-
cranial tumors in adults [1]; they occur in 20–40% of 
patients with systemic cancer and are a major cause 
of mortality. An early and accurate diagnosis of BMs is 
crucial for determining treatment strategy and prog-
nosis. A brain MRI with either 3-dimensional gradient 
echo (3D GRE) or turbo spin echo (3D TSE) is the gold 
standard for screening patients suspected of having BMs 
[2]. 3D TSE with black-blood imaging techniques such 
as improved motion-sensitized driven-equilibrium has 
shown results superior to those using 3D GRE for detect-
ing small metastases, with double detection rates of BMs 
less than 5  mm and shorter reading times [3], and is 
thus considered the “ideal” imaging protocol [2]. Indeed, 
3D TSE with black-blood imaging is recommended to 
replace 3D GRE imaging given its ability to detect small 
BMs that are missed on 3D GRE imaging [2].

Recently, stand-alone deep learning-based systems 
(DLSs) have shown detection accuracy for BMs that 
is comparable to that by radiologists [4–9]. A recent 
DLS study demonstrated that compared with the 3D 
GRE alone, adding a 3D TSE with black-blood imaging 
improves the detection of BMs [6], suggesting that the 
detection performance of both radiologists and the DLS 
is higher with the 3D TSE with black-blood imaging. 
However, actual benefits of DLS-based detection with 
black-blood imaging in terms of clinical workflow inte-
gration remains unclear. Aside from the high accuracy of 
stand-alone DLS, a significant improvement of radiolo-
gists’ performance with the aid of DLS in BM screening 
should be demonstrated. Reproducibility and workload 
are essential considerations when assessing the clinically 
relevant benefits of DLS-based algorithms. The benefits 
of an interactive DLS should be assessed in terms of 
overall diagnostic performance as well as reproducibility 
between radiologists. Moreover, considering that detect-
ing BMs is a tedious and time-consuming task, reduc-
ing radiologists’ workload through a DLS is of particular 
interest. We hypothesized that DLS-based metastasis 
detection enables automated detection and counting and 
may enhance diagnostic efficiency in reproducibility and 
reading time.

Thus, we aimed to assess whether a DLS on a recom-
mended protocol for BM improves the diagnostic work-
flow in terms of reproducibility and reading time across 
multiple centers.

Materials and methods
Study population
This multi-center retrospective study was approved by 
the institutional review boards of the participating insti-
tutions. Data on the 3D TSE with black-blood imaging 
have been consecutively obtained since it was imple-
mented in routine clinical practice (Asan Medical Center 
[Site 1]: 2020; Severance Hospital [Site 2]: 2019). At Site 
1, 1453 patients who underwent both a 3D GRE and 3D 
TSE MRI for metastasis work-up between October 2020 
and October 2021 were retrospectively included. Among 
them, 224 were diagnosed with BMs. Patients were 
excluded if (1) they had no BM (n = 1205) or (2) had other 
brain tumors (n = 24). From the cohort, 101 consecutive 
patients who underwent both a 3D GRE and 3D TSE MRI 
were included as a developmental set for the DLS (Fig. 1).

For the validation set, the inclusion criteria were as fol-
lows: (1) lung cancer (non-small cell lung cancer) con-
firmed by pathology, (2) newly developed BMs prior to 
surgery or radiotherapy, and (3) both a 3D GRE and 3D 
TSE MRI with at least one follow-up MRI. The exclusion 
criteria were as follows: (1) diagnosis of a solid tumor 
other than non-small cell lung cancer and (2) absence of a 
follow-up study as the reference standard. Between Octo-
ber 2020 and October 2021, 123 and 120 consecutive 
patients from Sites 1 and 2, respectively, were included as 
validation sets.

All imaging and clinical data were uploaded and uti-
lized using AiCRO, a clinical trial imaging management 
system (CTIMS) [10] that meets the current regulatory 
guidelines and supports computerized system validation. 
Baseline characteristics included age, sex, primary can-
cer, imaging acquisition date, and previous local therapy.

MRI acquisition protocol
Protocols for BMs were in accordance with the recent 
standardized imaging protocol consensus recommen-
dation [2], including both a 3D GRE and 3D TSE with 
black-blood (see Table  1 and Supplementary Mate-
rial S1). Briefly, 3D GRE was MPRAGE (Magnetization 
Prepared-RApid Gradient Echo) that consists of a non-
selective (180°) inversion pulse followed by a collection of 
rapidly acquired GREs. The imaging parameters for the 
3D GRE were as follows: repetition time (TR)/echo time 
(TE), 9.8/4.6 ms; flip angle, 8°; field of view, 24 cm; sec-
tion thickness, 1  mm; matrix, 1024 × 1024. The imaging 
parameters for 3D TSE were TR/TE, 600/28.4 ms; flip 
angle, 90°; field of view, 24 cm; section thickness, 1 mm; 
matrix, 240 × 240 or 512 × 512.

Conclusion Deep learning-based BM detection and counting with black-blood imaging improved reproducibility 
and reduced reading time, on multi-center validation.
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Image preprocessing and DLS predictions of metastasis
The DLS was trained using a developmental dataset of 
101 patients with 864 BMs. The BM segmentation model 
was implemented using nnU-Net, a 3D U-Net-based 
method (https://github.com/MIC-DKFZ/nnUNet) [11, 
12]. The 3D GRE and 3D TSE image pairs were fed into 
the model as inputs. A full-resolution 3D model was 
applied rather than a 2D model or cascade approach 
(see Supplementary Material S2 and Supplementary 

Fig.  1). (Source code on https://github.com/jieunp/
BM_detection_AI).

Reference standard for BMs
For reference masks, semi-automatic segmentation of the 
enhancing tumor region was performed by two research-
ers (M.S.K. and H.J.K., with 7 and 2 years of experience 
in radiology, respectively) on co-registered 3D GRE and 
3D TSE imaging using MITK software (www.mitk.org) 
[13]. Segmented images were validated by an experi-
enced neuroradiologist (H.S.K., with 18 years of experi-
ence in neuro-oncology imaging). It required 15–20 min 
per patient to make a reference mask. The total num-
ber of BMs and ground-truth volumes were recorded 
separately.

Image quality check and upload
The processed image masks and 3D GRE and 3D TSE 
images were de-identified, and the quality was checked 
by the system manager (A.S., with 5 years of experience 
in CTIMS) and uploaded to the system (AiCRO). The 
processed masks were displayed as white masks by apply-
ing the maximum values of all images.

Multi-reader image analysis
Four neuroradiologists from four hospitals (Asan Medi-
cal Center, Ajou University Medical Center, Samsung 
Seoul Hospital, and Seoul St. Mary’s Hospital) with 

Table 1 Imaging parameters of 3D GRE and TSE sequence of 
two centers

Site 1 Site 2
Technique GRE TSE GRE TSE
TR (msec) 9.8 600 5.9–8.6 500
TE (msec) 4.6 28.4 2.8–4.7 28.9–30
Flip angle 
(degrees)

8 90 8 90

FOV (mm2) 240 × 240 240 × 240 240 × 240 240 × 240
Acquisition 
matrix

512 × 512 512 × 512 240 × 240 240 × 240

Voxel size (mm) 0.5 × 0.5 × 0.5 0.5 × 0.5 × 0.5 1 × 1 × 1 1 × 1 × 1
Slice thickness 
(mm)

1 1 1 1

Number of 
excitations

2 1 2 1

Acquisition 
plane

Sagittal Sagittal Sagittal Sagittal

Note GRE = gradient-echo; TSE = turbo spin echo; TR = repetition time; TE = echo 
time; FOV = field of view

Fig. 1 Flow diagram for development and validation with multi-reader evaluation of DLS for detection and segmentation of BM. DLS = deep-learning 
based system, BM = brain metastasis; GRE = gradient-echo; TSE = turbo spin-echo; FROC = free-response receiver operating characteristic curve analysis
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varying degrees of experience (one with > 10 years and 
three with 5–7 years of experience) were recruited. All 
readers were blinded to clinical information.

The image analyses were conducted over three weeks 
with case-by-case random shuffling. Images with overlaid 
processed masks (with DLS) and images without over-
layed processed masks (without DLS) were randomly 
shuffled by the system, and readers evaluated the images 
sequentially. Before image analysis, the readers were 
trained in image analysis using 10 sample cases that were 
not included in the study. Figure  2 illustrates the image 
evaluation process and Supplementary Video 1 contains 
a video of the image analysis.

Metastases numbering > 10 per case was labeled “more 
than 10” BMs; specific numbers of metastases were not 
counted. This was done for two reasons: (1) assigning 
a > 10 BMs label is consistent with a recent treatment 
guideline for BMs [1], which suggests that whole-brain 
radiotherapy or systematic chemotherapy should be con-
sidered for patients with more than 10 metastases and (2) 
in clinical practice, radiologists often report the number 
of BMs as “multiple” or “numerous” when > 10 are found, 
and we aimed for the workload to account for this real-
world situation.

Statistical analysis
1) Detection performance of the DLS: Findings were 
considered true-positive when at least one voxel was 

overlapped with the ground-truth volume. Meanwhile, 
findings were considered false-positive (FP) when no 
voxel was overlapped with the ground truth volume. The 
sensitivity, positive predictive value (PPVs), and num-
ber of FPs per patient were calculated. Generalized esti-
mating equation (GEE) modeling was used to calculate 
95% confidence intervals (CIs) to account for clustering 
of multiple measurements per case. The free-response 
receiver operating characteristic (FROC) curve was also 
calculated.

2) Reproducibility among readers: The number of 
metastases recorded by the readers was compared for 
reproducibility. Scatter plots of the with and without 
DLS groups were drawn. The concordance correlation 
coefficient (CCC) was used as a reproducibility index to 
quantify agreement between the assessments. A Bland-
Altman analysis with 95% limits of agreement (LoA) 
assessed agreement between the readers’ counts and ref-
erence standard counts [14, 15].

3) Workload assessment: The difference in reading 
time between the with and without DLS groups was cal-
culated for each reader and compared. To account for 
repeated assessments of the given cases, we used linear 
mixed models and readers were incorporated as a ran-
dom effect. Subgroup analysis was also performed for the 
workload associated with counting the specific number 
of BMs (≤ 10) and assigning a > 10 BMs label.

Fig. 2 Screenshot of imaging evaluation system using in Clinical Trial Imaging Management System (AiCRO). In with DLS setting, the overlayed DLS 
masks appears with base image on the left and the base image is displayed on the right with DICOM image format. By clicking the start button, the read-
ing session starts. After reviewing images, the reader writes exact numbers of BM (when BM counts ≤ 10) or clicks on “more than 10” numbers of BM (when 
BM counts > 10). The reader clicks the end button and the reading time is automatically calculated. DLS = deep learning-based system
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Statistical analyses were performed by an expert bio-
statistician (K.H., with 15 years of experience) using 
R software (version 4.1.2) with the packages ‘lmerT-
est’ and ‘DescTools’. Statistical significance was set at P 
value < 0.05.

Data availability
The datasets generated or analyzed during the study are 
available from the corresponding author on reasonable 
request.

Results
Patient demographics
Table 2 summarizes the clinical characteristics of the 101, 
123, and 120 patients in the developmental set, Site 1 val-
idation set, and Site 2 validation set, respectively. There 
were no significant differences in age or sex between the 
two validation sets.

In the developmental and validation sets, the total 
number of BMs was 864 (developmental set), 2,078 (Site 
1), and 832 (Site 2). The mean number of BMs per patient 
was 8.6 ± 9.6 (developmental set), 8.7 ± 12.2 (Site 1), and 
7.0 ± 6.6 (Site 2). The mean diameter of the metastases 
was 4.69 ± 3.57 mm (developmental set), 4.53 ± 3.52 (Site 
1), and 4.45 ± 4.55 (Site 2) and the proportion of BMs 
smaller than 5 mm was 79.5% (developmental set), 81.6% 
(Site 1), and 75.6% (Site 2). The distribution and size of 
the BMs across patients are shown in Supplementary 
Fig. 2.

Detection performance of the DLS
In the developmental set, the DLS showed a sensitivity of 
87.7% (758/864, 95% CI: 84.0–90.5) and positive predic-
tive value of 89.0% (758/840, 95% CI: 84.7–92.6). In the 
validation set, the DLS showed an overall detection sen-
sitivity of 90.2% (2625/2910, 95% CI: 88.1–92.2) and PPV 
of 88.2% (2624/2974, 95% CI: 85.6–90.4). Figure  3 illus-
trates the FROC curve for BMs in the validation set. The 
number of FPs per patient was 1.44 (350 FPs from 243 
patients).

Table  3 summarizes the sensitivity, PPV, and FPs per 
patient for each hospital. Supplementary Fig. 3 shows the 
FROC for the developmental set.

Reproducibility among readers
Table 4 summarizes the results of reproducibility among 
readers. The CCC for the number of BMs detected 
between the readers and the reference standard was 
higher with the DLS (0.918, 95% CI: 0.901–0.933) than 
without the DLS (0.897, 95% CI: 0.876–0.915). Scat-
terplots of the BM counts in the with and without DLS 
groups are shown in Fig.  4A. The distribution was less 
dispersed when the readers were assisted with the DLS, 
indicating that agreement among readers increased when 
the DLS was used.

The Bland-Altman plot for the difference between the 
readers’ counts and the reference counts is shown in 
Fig.  4B. This difference was larger in the without DLS 
group (LoA: −0.281, 95% CI: −2.888, 2.325) than in the 
with DLS group (LoA: −0.163, 95% CI: −2.692, 2.367).

Table 2 Patient characteristics and information on brain metastases
Developmental set Validation set
Site 1 Site 1 Site 2 P-value

Number of patients 101 123 120
Age 61.4 ± 9.2 65.0 ± 9.7 62.6 ± 11.9 0.08
Male Sex 60 (59.4) 68 (55.3) 72 (60) 0.42
BM Number 864 2078 832
Average number of BM for each patient 8.6 ± 9.6 8.7 ± 12.2 7.0 ± 6.6 0.015
Patients with > 10 numbers of BM 20 (19.8) 32 (26.0) 19 (16.8) 0.050
Volume and size (mm3) of BM
Mean ± SD (volume, mm3) 204.9 ± 811.8 211.5 ± 1406.9 345.7 ± 1569.4 0.024
Mean ± SD (diameter, mm) 4.69 ± 3.57 4.53 ± 3.52 4.45 ± 4.55 0.625
BM numbers less than 5 mm in diameter 689 (79.5) 1697 (81.6) 619 (75.6) 0.378
Primary tumor types 0.587
Lung adenocarcinoma 85 (84.2) 115 (93.5) 110 (91.6)
Lung squamous cell carcinoma 5 (4.9) 8 (6.5) 10 (8.3)
Lung other types of cancer 2 (1.9)
Breast cancer 5 (4.9)
Colon cancer 2 (1.9)
Renal cancer 4 (1.9)
Data are expressed as the mean ± standard deviation or numbers with percentages in parentheses. P value indicates statistical significance between two hospitals 
in the validation set

Abbreviation BM = brain metastasis; SD = standard deviation
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Workload assessment
Table 5 gives the workload assessment results. The mean 
reading time was 66.9 s without the DLS and 57.3 s with 
the DLS. Thus, the DLS significantly reduced the reading 
time by 9.6 s (95% CI: 7.3–12.0) (P <.001).

The reading time was longer when the specific number 
of BMs was counted instead of assigning the > 10 BMs 
label for either with or without the DLS. The DLS greatly 
reduced the reading time for either counting the specific 
number of BMs (difference 9.1s, P <.001) or assigning the 
> 10 BMs label (difference of 12.7s, P <.001). The effect of 
DLS for reducing the reading time was more pronounced 
for the > 10 BMs label than counting the specific number 
of BMs.

The DLS significantly reduced the reading time regard-
less of the imaging center (difference of 14.0 and 5.2s in 
Sites 1 and 2, respectively). The effect on reading time 

was significant in all centers for either counting a specific 
number of BMs or assigning the > 10 BMs label (Site 1, 
overall: P <.0001; Site 2, overall: P =.0018; Site 1, equal or 
less than 10 BMs: P <.0001; Site 2, equal or less than 10 
BMs: P =.011; Site 1, > 10 BMs: P <.0001, Site 2, > 10 BMs: 
P =.004).

Discussion
To date, reproducible and quantitative imaging endpoints 
for BM have not been available for DLS owing to high FP 
detections from 3D GRE. In this study, the clinical value 
of DLS with black-blood imaging for the detection and 
counting of BM was demonstrated. The inter-rater agree-
ment among radiologists and the agreement between the 
readers’ counts and reference standard counts increased 
with DLS. The readers’ reading time was significantly 
reduced with DLS, regardless of number of BM or imag-
ing centers, demonstrating workload reduction. The DLS 
showed a sufficient detection performance with a sensi-
tivity and PPV of 90.2% and 88.2%, respectively. To our 
knowledge, the present study is the first to address real 
benefits in terms of reproducibility and workload of DLS 
with black-blood imaging, which is the recommended 
protocol for clinical trials of BMs [2].

Variation in inter-reader performance is a well-known 
problem in BM detection. A recent study found BM 
detection sensitivity to vary from 66.4 to 88.1% among 

Table 3 Performance of deep learning system in the validation 
set per each hospital
Performance Site 1 Site 2
Sensitivity 90.9% [1890/2078] 

(88.4–93.4%)
88.3% [735/832] 
(85.9–91.6%)

PPV 87.9% [1890/2148] 
(85.3–90.1)

88.9% [734/826] 
(86.1–91.0)

FPs per patient 2.09 [258/123] 0.77 [92/120]
FP = false-positive; PPV = positive predictive value

Table 4 Reproducibility between the readers’ counts and reference standard counts in the without DLS and with DLS setting
Without DLS With DLS

CCC 0.897 (0.876, 0.915) 0.918 (0.901, 0.933)
LoA between readers’ counts and reference standard counts −0.281 (− 2.888, 2.325) −0.163 (− 2.692, 2.367)
Data are expressed as means with 95% confidence intervals in parentheses. CCC was calculated with BM numbers equal or less than 10

CCC = concordance correlance coefficient; LoA = limits of agreement

Fig. 3 The performance of DLS for BM. The lesion-based and patient-based FROCs of DLS is shown. FROC = free-response receiver operating characteristic
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radiologists with different levels of experience [4]. Since 
software is robust to human variation, DLS may con-
tribute to reducing variability in radiologists’ diagnostic 
performance [16]. Our results show that inter-reader 

agreement in terms of CCC increases with DLS com-
pared to that without DLS (from 0.896 to 0.917), sug-
gesting that assistance of DLS allows a more stable and 
reproducible assessment. These findings are supported 

Table 5 Comparison of workload in reading BM between with DLS and without DLS setting
Time [seconds] Without DLS With DLS Difference P-value
All 66.9 (43.2, 90.6) 57.3 (33.6, 81.0) 9.6 (7.3, 12.0) < 0.001
BM numbers
≤ 10 72.5 (45.6, 99.4) 63.5 (36.6, 90.4) 9.1 (6.4, 11.6) < 0.001
> 10 56.4 (43.2, 69.5) 43.6 (30.5, 56.8) 12.7 (8.8, 16.6) < 0.001
Imaging Center
Site 1 71.5 (48.2, 94.7) 57.5 (34.3, 80.8) 14.0 (10.7, 17.2) < 0.0001
Site 2 62.3 (39.0, 85.5) 57.05 (33.8, 80.3) 5.2 (1.9, 8.5) 0.0018
Imaging center & BM numbers
≤ 10
Site 1 79.9 (53.5, 106.3) 66.1 (39.7, 92.5) 13.8 (10.0, 17.6) < 0.0001
Site 2 65.3 (38.9, 91.8) 60.7 (34.2, 87.1) 4.7 (1.1, 8.3) 0.011
> 10
Site 1 55.4 (41.1, 69.6) 40.9 (26.6, 55.1) 14.5 (9.6, 19.5) < 0.0001
Site 2 56.8 (40.5, 73.1) 47.2 (30.8, 63.6) 9.6 (3.2, 16.0) 0.004
Note The unit number is seconds. Data are expressed as means with standard deviations in parentheses

Abbreviation DLS = deep learning-based system

Fig. 4 Distribution of numbers of BM equal or less than 10 counts. (A) The scatter plots of number of BM counts in “assessment without DLS” and “assess-
ment with DLS” setting. The readers report less dispersed numbers of BMs when assisted with DLS. (B) Bland-Altman plots with 95% limits of agreement 
(LoA) exhibiting differences between reader counts and reference standard. The “assessment without DLS” shows wider LoA compared with “assessment 
with DLS”. DLS = deep learning-based system
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by decreased LoA with DLS compared to without the 
DLS (from − 0.281 to − 0.163), indicating greater agree-
ment between reader and reference standard with DLS. 
Increased reproducibility will increase the reliability of 
radiologists’ interpretation, regardless of their experience 
level.

The efficiency of BM detection, particularly in terms of 
workload, is another important aspect of DLS implemen-
tation. Studies have shown a decrease in the reading time 
by 40 to 85s with DLS [4, 17]; however, since these stud-
ies used 3D GRE imaging, the reading times for both with 
and without DLS groups were remarkably longer than 
those in our DLS study with black-blood imaging. Specif-
ically, the reading time ranged from 72 to 85s in the with 
DLS group and 114 to 140s in the without DLS group 
with 3D GRE imaging [4, 17], while in our study, shorter 
reading times of 57.3 and 66.9s in with and without DLS 
groups, respectively, were noted. A previous study has 
already shown a significant decrease in reading time by 
up to 30  s with 3D TSE compared to 3D GRE imaging, 
while the reading time with 3D TSE ranged from 45.5 to 
53.7s [3], and our results further demonstrate that DLS 
with black-blood imaging is even more efficient than DLS 
without black-blood imaging.

The robustness and clinical utility of DLS for detect-
ing BMs need to be challenged to fully understand its 
strengths and limitations. Majority of previous studies 
applying deep learning for BMs were single-center stud-
ies [4, 6–8, 18–20], which critically limits the generaliz-
ability of the DLS. Moreover, previous studies have only 
reported the stand-alone performance of DLSs [6–9, 
18–20], which lacks clinical feasibility as it is currently 
ethically and legally impossible for DLS to be considered 
an independent neuroimaging reader. Thus, the immi-
nent clinical scenario of implementation of DLS in BM 
detection is as an assistance of radiologist rather than as 
a replacement.

In our study, 3D TSE with black-blood imaging was the 
reference standard for BM detection. Our DLS showed 
a high sensitivity of 90.2% for BM detection, which is 
higher than that of the majority of previous DLS stud-
ies (range, 81–91%), which used only 3D GRE images 
[4, 8, 19, 20]. A recent DLS study using 3D GRE imaging 
showed that with DLS, radiologists’ detection sensitivity 
improved from 92.7 to 95.0% [17], similar to our find-
ings. However, these results should be interpreted with 
caution since there is a substantially different proportion 
of small BMs in these studies; 42.7% of the ground-truth 
lesions in our study were < 3  mm, while 14.2% of the 
lesions in the DLS study using 3D GRE were < 3 mm [17]. 
The pooled detection sensitivity of radiologists has been 
reported to be higher with 3D TSE than with 3D GRE 
images (89.2% vs. 81.6%) [21], which suggests the possi-
bility that DLS studies using 3D GRE imaging may have 

incomplete ground-truth masks with missed lesions. The 
use of 3D TSE with black-blood imaging in our study may 
have contributed to the increased detection of small BMs 
for ground-truth masks, which were sensitively detected 
in DLS.

FP per patient is the most commonly used metric in 
articles on BM detection with deep learning [8, 9]. Of 
note, FPs in Site 1 was 2.09 (258/123), which was higher 
than that in Site 2 0.77 (92/120). We speculate there are 
two reasons: first, the average number of BMs for each 
patient was higher in Site 1 (8.7 per patient) compared 
with Site 2 (7.0), which simply increased the number 
of FP cases. Second, there were several patients with 
extremely large number of BMs (33–65 BMs) in Site 1, 
which contributed to increase the number of FP cases per 
patient. This increased number of ‘per patient’ calcula-
tion is supported by the fact that sensitivity (true posi-
tive cases/disease positive cases) and PPV (true positive 
cases/test positive cases) between two sites are similar.

Our study had several limitations. First, our model was 
trained and tested on lung cancer patients with BMs. 
Because the incidence of BMs is lower when screening, 
with a reported rate of 26.8% in lung cancer [22], a pro-
spective study including patients without BMs is war-
ranted. Second, our DLS implemented 3D black-blood 
imaging, which may not be available in all scanners. 
Third, the readers counted the numbers of BMs and the 
reading time was automatically reported, which simu-
lated as a real workflow in radiology, and did not draw 
region of interest (ROI) for each metastasis. DLS as a sec-
ond reader was evaluated in terms of workflow efficiency 
and not from diagnostic efficacy. Further prospective 
study combining diagnostic efficacy and workflow effi-
ciency can be designed for guiding stereotactic radiosur-
gery reflecting the actual clinical workflow.

Conclusion
In conclusion, deep learning-based metastasis detection 
and counting with black-blood imaging improved repro-
ducibility and enhanced diagnostic efficiency through a 
reduction in reading time, with multi-center validation.
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CCC  concordance correlation coefficient
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