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Abstract 
Plasma protein biomarkers have been considered promising tools for diagnosing dementia subtypes due to their low variability, cost-
effectiveness, and minimal invasiveness in diagnostic procedures. Machine learning (ML) methods have been applied to enhance 
accuracy of the biomarker discovery. However, previous ML-based studies often overlook interactions between proteins, which are 
crucial in complex disorders like dementia. While protein–protein interactions (PPIs) have been used in network models, these models 
often fail to fully capture the diverse properties of PPIs due to their local awareness. This drawback increases the chance of neglecting 
critical components and magnifying the impact of noisy interactions. In this study, we propose a novel graph-based ML model for 
dementia subtype diagnosis, the graph propagational network (GPN). By propagating the independent effect of plasma proteins on PPI 
network, the GPN extracts the globally interactive effects between proteins. Experimental results showed that the interactive effect 
between proteins yielded to further clarify the differences between dementia subtype groups and contributed to the performance 
improvement where the GPN outperformed existing methods by 10.4% on average. 

Keywords: dementia subtype diagnosis; Alzheimer’s disease; vascular dementia; plasma protein biomarker; protein–protein interac-
tion; graph neural network 

Introduction 
Dementia is characterized by cognitive decline and impairment 
in daily living functions due to degenerative brain changes, which 
is subdivided into several subtypes according to pathophysiolog-
ical characteristics [1, 2], the most common being Alzheimer’s 
disease (AD), followed by vascular dementia (VD). The diagnoses 
of dementia subtypes are based on cognitive function assess-
ment, neuroimaging such as positron emission tomography (PET) 
and magnetic resonance imaging (MRI), and cerebrospinal fluid 
(CSF) biomarkers [3–7]. First, cognitive function assessment is 
an essential process for diagnosing dementia, measured by a 
standardized neuropsychological test, but it may vary depending 
on the patient’s condition on the day of testing and can also vary 
based on the examiner. Second, neuroimaging provides objective 
evidence on the deposition of amyloid beta (Aβ) or the detection 
of tau tracer in PET and the determination of hippocampal or 
medial temporal neurodegeneration in MRI, but requires high 
costs [6]. Third, CSF biomarkers, such as Aβ42, total tau (T-tau), and 
phosphorylated tau (P-tau), can be utilized; however, patients are 

required to undergo bed rest for several hours and, although rare, 
potentially fatal side effects can occur. Hence, a diagnostic marker 
for differentiating the possible pathophysiology and subtypes of 
dementia with high reliability, cost-effectiveness, and minimal 
invasiveness is required for clinical practicality. 

Recently, the discovery of blood biomarkers for dementia has 
raised the possibility of low-variable, low-cost, and less-invasive 
alternative methods for assessing the possible pathophysiology 
and diagnosis of dementia subtypes [8–10]. Moreover, the applica-
tion of machine learning (ML) has enabled the discovery of more 
sophisticated dementia-associated biomarkers and the prediction 
of target outcomes with high accuracy [11–14]. However, most 
existing studies only considered the independent effects of 
proteins excluding the interactive effects between proteins. This 
approach overlooks the fact that multiple proteins with small 
effect sizes collectively contribute to the phenotype owing to their 
interactions. Protein interaction–based disease-related biomark-
ers, which capture the complex interplay between proteins in dis-
ease, are of great importance for understanding molecular patho-
genesis, risk assessment, and disease classification [15]. With the
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development of high-throughput technologies, protein–protein 
interaction data have grown rapidly to cover nearly the entire pro-
teome [16], and, at the same time, network-based methods using 
protein interactions have become prominent as ML techniques 
can be applied to identify sophisticated biomarkers [17]. Dementia 
is a complex disorder involving the interactions between specific 
molecular pathways, making the effects of protein interactions 
more important [18, 19]. Therefore, a model that considers protein 
interactions within molecular pathways is needed. 

A graph convolutional network (GCN) has utilized protein– 
protein interactions (PPIs) among blood proteins could have 
unveiled distinct dementia subtypes [20]. In the GCN, the feature 
of each node is aggregated with the features of adjacent nodes 
through edges by a graph convolutional layer. This process 
is applied to the PPI network in which the nodes, edges, and 
features correspond to the proteins, PPIs, and expression values by 
blood sequencing, respectively. Therefrom, the extracted protein 
features represent the interactive effect between proteins in 
that the expression value of each protein is aggregated with the 
expression values of adjacent proteins on the PPI network. This 
approach of representing the protein interaction by applying the 
GCN to the PPI network is used for various target tasks in addition 
to novel PPI identification [21–23], disease type classification [24], 
and cancer survival prediction [25]. 

When analyzing protein interactions, it is crucial that the 
effects of indirect interactions among proteins also significantly 
contribute to disease progression. Proteins transmit signals to 
other proteins at a distance and collectively have an impact on 
the progression of certain diseases. This mechanism suggests that 
the application of ML to the PPI network should perform targeted 
tasks through the global awareness of protein interactions, which 
extracts the full range of interaction effects by considering the 
whole PPI network. However, the graph convolutional operation 
of GCN is limited to the local awareness of PPIs. In other words, 
it performs feature aggregation solely between 1-hop neighboring 
nodes, thus restricting its ability to capture only local interactions 
between directly connected proteins within the PPI network. To 
overcome this limitation, extended GCN can be employed to 
aggregate features from multi-hop neighbors. 

Previously, two main approaches have been employed to extend 
GCN for K-order feature aggregation: ‘multiplied convolution 
filter’ and ‘parallelized network architecture’. The multiplied 
convolution filter–based approach repeatedly multiplies the 
normalized adjacent matrix K times so that the graph convolution 
filter is represented to K-th powered single matrix. This approach 
started from Simple Graph Convolution (SGC) [26] which is 
empowered by Exponential Graph Convolution (EGC) and Linear 
Graph Convolution (LGC) [27]. In GCN, K graph convolutional 
layers are required for feature aggregation with K-hop neighboring 
nodes, but SGC is simplified to a single layer through a K-
th-powered graph convolution filter. EGC derives the graph 
convolution filter by combining the graph Laplacian up to the 
K-th power with the coefficients of the exponential power series. 
LGC is the graph convolution filter by linear combination of graph 
Laplacian monomials up to K-th power. 

Next, the parallelized network architecture consists of K num-
ber of graph convolution filters up to K-hop neighboring nodes 
on the adjacent matrix. Each filter is applied to parallel graph 
convolutional layers to individually aggregate node features. The 
representative method of this approach is MixHop [28] propos-
ing the higher-order graph convolutional architecture, which is 
further developed as universal GCN (UGCN) [29] and mixed-order 
GCN (MOGCN) [30]. The three methods reveal clear differences 
in how they merge node features extracted from parallel graph 

convolution layers. To merge multiple feature sets, the simple con-
catenation, the attention mechanism, and the ensemble module 
are utilized by MixHop, UGCN, and MOGCN, respectively. 

These extended models of GCN can reflect a wider range of PPI, 
but they do not consider the entire properties of PPI network. Thus, 
their capacity is constrained to reflecting PPI within a limited local 
range, leading to several following issues: (1) Neglecting the struc-
tural attributes of PPI network: PPI network is a complex network 
with a hierarchical structure, including subnetworks. Focusing 
solely on interactions between neighboring proteins might over-
look critical features, modules, and clusters within the entire net-
work [31, 32]. (2) Missing key components of PPI network: hub proteins 
situated in specific regions of PPI network and the connections 
between them exert a significant influence on PPI across the 
entire network. However, these critical elements may not always 
be accounted for in local PPI analyses [33]. (3) Emphasizing the noisy 
interactions within the PPI network: as the PPI network comprises 
PPI data from diverse sources, it inherently incorporates experi-
mentally noisy interactions. Utilizing local PPI approaches poses 
the risk of overestimating these noisy interactions [34–36]. While 
extending the GCN-extended model structure and broadening 
its configuration may mitigate these issues to some extent, it 
remains a temporary solution incapable of achieving global PPI 
representation. This limitation stems from graph convolution’s 
reliance on locality, facilitating feature aggregation between 
adjacent nodes. To address these challenges comprehensively and 
accurately capture the properties of PPI networks, graph neural 
networks necessitate feature aggregation based on globality. 

In this study, we introduce a novel graph neural network 
termed ‘graph propagational network’ (GPN). Central to our 
approach is the graph propagation layer, which generates a 
globally aggregated feature representation by spreading the 
features of each node across all nodes within the graph. This 
enables the diagnosis of dementia subtypes based on blood 
biomarkers, leveraging the interactions among blood proteins to 
accurately reflect the key components and structural properties 
of the PPI network. 

Overview of the study 
This study comprises two main stages. Firstly, in the plasma 
protein biomarker identification stage (Fig. 1A), the expression 
levels of plasma proteins in participants with mild cognitive 
impairment (MCI) are compared to those in participants with AD 
and VD. Proteins exhibiting significant differences between par-
ticipant groups are then identified as plasma protein biomarkers 
for dementia subtypes. Subsequently, the proposed method, GPN, 
is employed to classify MCI, AD, and VD based on the identified 
protein biomarkers (Fig. 1B). The GPN not only considers the 
expression values of individual proteins but also accounts for the 
effects resulting from interactions between proteins. In addition, 
to objectively evaluate our method, we established distinct dis-
covery and validation cohorts (Fig. 1C). In the discovery cohort, 
we identified plasma protein biomarkers and trained the demen-
tia subtype diagnosis model. On the other hand, the validation 
cohort was employed to assess the performance of the model 
and conducted various analyses regarding the interpretation and 
utilization of the model’s outcomes. 

Methods 
Plasma protein biomarker identification 
Study participants 
Participants were from the Biobank Innovations for chronic Cere-
brovascular disease With ALZheimer’s disease Study (BICWALZS)
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Figure 1. Schematic overview of the study design. The analysis strategy consists of two stages: plasma protein biomarker identification (A) and dementia 
subtype diagnosis using the GPN (B). In the first stage, the expression levels of proteins in participants with MCI are compared to those in participants with 
AD and VD, respectively. Therefrom, proteins showing significant differences between diagnosis groups are identified as biomarkers. In the second stage, 
the proposed model performs dementia subtype diagnosis utilizing the identified biomarkers. Our model not only takes into account the expression 
value of each plasma protein biomarker (independent effect) but also considers the effects resulting from interactions between proteins (interactive 
effect) for diagnosing dementia subtypes. In this study, discovery and validation cohorts are configured for independent evaluation of the proposed 
method (C). The discovery cohort is applied to identify plasma protein biomarkers and train the proposed model for dementia subtype diagnosis. The 
validation cohort is utilized for performance evaluation, model interpretation, and association analysis with clinical biomarkers. 

[ 37] at Ajou University Hospital (Suwon, Republic of Korea), a 
disease-focused biobank supported and funded by the National 
Institute of Health of the Korea Disease Control and Prevention 
Agency. The participants were diagnosed with MCI, AD, and VD 
based on he expanded Mayo Clinic criteria [38], the core clin-
ical criteria proposed by the National Institute on Aging and 
the Alzheimer’s Association working group in 2011 [5], and the 
major vascular neurocognitive disorder criteria proposed in the 
fifth edition of the Diagnostic and Statistical Manual of Mental 
Disorders [39], respectively. Therefrom, the 392 participants were 
categorized into 289 MCI (74%), 73 AD (19%), and 30 VD (8%) par-
ticipants. Additionally, the participants were divided into the dis-
covery and validation cohorts based on the time of recruitment. 
The discovery cohort included 271 participants recruited between 
November 2016 and August 2019. Of these, 191 (70%), 58 (21%), 
and 22 (8%) had MCI, AD, and VD, respectively. The validation 
cohort included 121 participants, recruited from September 2019 
to September 2020, consisting of 98 (81%) participants with MCI, 
15 (12%) with AD, and 8 (7%) with VD. 

Olink proteomic assays 
Plasma samples from participants are profiled by the Olink 
Proteomics using proximity extension assay (PEA) technology. 
The Olink Neurology panel containing 92 proteins is assayed in 
this study, where the assay of the neurology panel includes the 
established markers associated with neurobiological processes 
and neurological diseases (e.g. neurodevelopment, axon guidance, 
synaptic function, or specific conditions such as AD) [40]. Quality 
control of the raw data was performed by using the internal and 

external controls in the panels, and the protein expression levels 
were normalized by the interplate control normalization. 

Gene Ontology analysis 
Gene Ontology (GO) analysis on the selected plasma proteins 
is conducted to investigate functional annotations and under-
stand the biological meaning of the biomarkers. GO analysis is 
performed by using Bioinformatics Resources provided by the 
Database for Annotation, Visualization, and Integrated Discovery 
(DAVID, https://david.ncifcrf.gov, version 2021) [41, 42]. 

Dementia subtype diagnosis using graph 
propagational network 
The proposed model, GPN, aims to capture not only the effects 
of protein itself but also the interactive effects between proteins 
on the classification of dementia subtypes (Fig. 2A). To extract 
the interactive effect by propagating the independent effects 
across the network, the GPN was applied to the PPI network 
obtained from the STRING database (https://string-db.org/) [43, 
44] encompassing the global interactions between proteins. Dur-
ing this process, the smoothness parameter controls the range 
of PPIs determining the extent to which independent effect is 
propagated within the GPN (Fig. 2B), where the smoothness of 
the PPI network indicates that the expression values of the inter-
acting proteins are similarly represented to each other. As the 
smoothness decreases, lower-order PPIs are considered to be more 
important in GPN, highlighting interactions between nearby pro-
teins. Vice versa, when the smoothness increases, higher-order 
PPIs, reflecting interactions between distant proteins, become

https://david.ncifcrf.gov
https://david.ncifcrf.gov
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Figure 2. Schematic description for GPN. Our model extracts the interactive effect by propagating the independent effect to the PPI network, combines 
both effects, and diagnoses dementia subtypes (A). GPN consists of two parameters: smoothness and classifier. Smoothness controls the extent 
of propagating the independent effect (B). Decreasing smoothness highlights lower-order PPIs, while increasing smoothness takes higher-order PPIs 
important as well. Classifier indicates the coefficient matrix, which is applied to the combined effect, for dementia subtype diagnosis (C). 

increasingly more influential in GPN. The smoothness is usually a 
predefined parameter, but in GPN, it is a learnable parameter that 
is optimized through the model training. After that, GPN combines 
the extracted interactive effects with the independent effect and 
diagnoses dementia subtypes by the classifier ( Fig. 2C). 

Formulation 
The data matrices for the independent effect and PPI network 
are denoted as X ∈ Rp×n and W ∈ Rp×p, respectively, where p is 
the number of plasma protein biomarkers and n is the number 
of participants. The interactive effect, indicated by F, is extracted 
by propagating the independent effect to the PPI network, and in 
this process, GPN aims to reflect the global interactions among 
proteins. For this purpose, graph-based semi-supervised learning 
[45–47] is applied to the proposed method, and therefrom, the 
objective function for F is defined as follows: 

min 
F 

(F − X)
T 

(F − X) + μFTLF (1) 

where L is the graph Laplacian, defined as L = diag (W) − W, and  
μ is a trainable parameter that trades off the loss (the first term) 
and the smoothness (the second term). The solution of equation 
(1) is obtained in the closed form as follows: 

F = (I + μL)
−1 X = �−1X ∈ R

p×n. 

where (I + μL) is replaced with � for the brief formulation. 
Next, the GPN combines the extracted interactive effect F 

with the independent effect X. Given the combining coefficient 
denoted as α, to prevent the problem of combining coefficient 
turning negative during the model training, α is transformed into 
a probability form as 

θ = 
1 

1 + e−α . 

Therefrom, the combined effect, represented as Z ∈ Rp×n, is  
derived by a linear combination of X and F as follows: 

Z = θF + (1 − θ) X 

Then, the combined effect Z is multiplied by the classifier 
parameter denoted as β ∈ R

p×c, where c is the number of dementia 
subtypes. Finally, the individual diagnosis, represented as proba-
bility for each dementia subtype, is obtained by using the softmax 
function. 

P = softmax
(
βT Z

) ∈ R
c×n 

Optimization 
The objective function for GPN is formulated as follows: 

argmin 
α,μ,β 

L + δR (2) 

where L and R indicate the cross-entropy loss and the regulariza-
tion term, respectively, and δ is the combining coefficient (δ >  0). 
The cross-entropy loss L and the regularization term R in (2) 
defined as 

L = − 1 
n 

Tr
(
YTlog P

)
, R = ‖α‖2 

2 + ‖μ‖2 
2 + ‖β‖2 

2 

where Y ∈ Rc×n is the labeled data indicating the real diagnosis 
for dementia subtypes. The objective function is optimized by 
gradient descent method [48–50]. First, the gradient w.r.t., the  
coefficient matrix β is derived as 

∇β = 1 
n Z(P − Y)

T + 2δβ. 

Second, to find the gradient w.r.t. α, the derivative of Z w.r.t. α is 
firstly obtained. Since α has been converted to θ , ∂Z/∂α is derived 
by combining the derivative of Z w.r.t. θ (∂Z/∂θ = F − X) and the 
derivative of θ w.r.t. α (∂θ/∂α = θ (1 − θ)) as follows: 

∂Z 
∂α = θ (1 − θ) (F − X) (3) 

Then, the gradient w.r.t. α is obtained by combining ∂L/∂Z with 
(3) as  

∇α = 1 
n θ (1 − θ) Tr

(
(F − X)

T 
(β (P − Y))

)
+ 2δα.
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Table 1. Demographic and clinical characteristics of study participants. 

Characteristics Study 
participants 
(n = 392) 

Discovery 
cohort 
(n = 271) 

Validation 
cohort 
(n = 121) 

P-value 

Age, median (IQR), yr 73 (67–77) 73 (65–77) 73 (67–77) 0.897 
Female, No. (%) 279 (71.2) 192 (70.8) 87 (71.9) 0.927 
MADRS, median (IQR) 14 (6–24) 14 (6–24) 15 (4–24) 0.995 
MMSE, median (IQR) 24 (21–27) 24 (21–27) 24 (20–26) 0.717 
CDR-SB, median (IQR) 2.0 (1.5–4.0) 2.0 (1.5–4.0) 2.0 (1.5–3.0) 0.166 
GDS, median (IQR) 3 (3–4) 3 (3–4) 3 (3–4) 0.313 
APOE genotype, No. (%) 

ε2 allele carrier 53 (13.5) 38 (14.0) 15 (12.4) 0.536 
ε4 allele carrier 106 (27.0) 73 (26.9) 33 (27.3) 0.921 

Aβ-positive, No. (%) 117 (29.8) 91 (33.6) 26 (21.5) 0.086 
MTA-positivea, No. (%) 89 (22.8) 70 (26.0) 19 (15.7) 0.022 
WMH-positiveb, No. (%) 146 (37.4) 104 (38.7) 42 (34.7) 0.809 

Abbreviations: IQR, interquartile range; MADRS, Montgomery–Asberg depression rating scale; MMSE, Mini-Mental Status Examination; CDR-SB, Clinical 
Dementia Rating Sum of Boxes; GDS, Global Deterioration Scale; APOE, apolipoprotein E; Aβ, amyloid beta; MTA, medial temporal lobe atrophy score; WMH, 
white matter hyperintensity. aMTA scale is divided into left and right and subdivided into 0–4 according to severity, and in this study, MTA-positive was set for 
cases where the sum of left and right sides was 5 or more. bWMH scale is divided into three types (mild, moderate, and severe), and WMH-positive was set for 
moderate and severe. 

Third, to find the gradient w.r.t. μ, the derivative of �−1 w.r.t. 
μ is firstly represented according to the differentiation of inverse 
matrix as follows: 

∂�−1 

∂μ = −�−1 ∂�
∂μ

�−1 = −�−1L�−1. 

Then, ∂F/∂μ is obtained by multiplying ∂F/∂� and ∂�/∂μ, and  
since ∂F/∂� = X, the gradient w.r.t. μ is derived as 

∇μ = − θ 
n Tr

((
�−1L�−1X

)T 
(β (P − Y))

)
+ 2δμ. 

Results 
Demographic and clinical characteristics of 
participants 
We analyzed the data from discovery cohort (n = 271) and vali-
dation cohort (n = 121). Clinical characteristics of the participants 
are summarized in Table 1. The median (IQR) age was 73 (67–77) 
years, the Montgomery–Asberg Depression Rating Scale (MADRS) 
was 14 (6–24), the Mini-Mental State Examination (MMSE) was 24 
(21–27), the Clinical Dementia Rating Sum of Boxes (CDR-SB) was 
2.0 (1.5–4.0), and the Global Deterioration Scale (GDS) was 3 (3– 
4). Of the 392 participants, 71.2% were female; 13.5% and 27.0% 
had APOE ε2 and  ε4 carriers, respectively; and the positive ratio 
for Aβ, medial temporal lobe atrophy (MTA), and white matter 
hyperintensity (WMH) were 29.8%, 22.8%, and 37.4%, respectively. 
There were no differences between the discovery and validation 
cohorts in any other characteristic, except for MTA-positive. Fur-
thermore, we divided the participants in each cohort according 
to their diagnosis and compared the demographic and clinical 
characteristics between the subgroups (Supplementary Tables S1 
and S2). In brief, significant differences were found between the 
subgroups in terms of major clinical characteristics. 

Differentially expressed plasma proteins 
Plasma protein levels of the participants were profiled using 
PEA, identifying the differentially expressed proteins in AD and 
VD compared to those in MCI. A total of 90 proteins among 92 
proteins in the panel could be detected after applying cutoff 
of the missing frequencies above 75%. We identified 22 and 9 
proteins that were differentially expressed in participants with 

AD and VD, respectively, including 5 common proteins (Fig. 3A; 
Supplementary Tables S3 and S4). The significance of the subtype 
difference was estimated by the linear regression analysis using 
‘limma’ [51] implemented in an R/Bioconductor (https://www. 
bioconductor.org/). As a result, 26 proteins were identified as 
plasma protein biomarkers for dementia subtype diagnosis, con-
sisting of 9 and 17 significantly upregulated and downregulated 
proteins (Fig. 3B). The common biomarkers for AD and VD showed 
an average of fold difference greater than five times higher than 
that of other biomarkers (Supplementary Table S5). 

Next, we performed GO analysis to identify enriched functional 
categories among the identified plasma protein biomarkers. We 
found 11 significant GO terms for the identified 26 biomark-
ers [FDR-adjusted P-values (Q-values) <.05, with coverage ratios 
>40%]. Comparing with GO analysis on the total 90 proteins, there 
were five common GO terms and six GO terms specific to the iden-
tified biomarkers (Fig. 3C; Supplementary Table S6). The former 
were generally related to the cellular anatomical entity outside 
plasma membranes and the molecular signal transmission within 
a biological system, while the latter were mainly associated with 
the generation and progression of cells and tissues in the nervous 
system. The significance level of the GO terms specific to the 
identified biomarkers was on average 1.6 times higher than that 
of the common GO term. 

Furthermore, we constructed the interaction network for the 
identified plasma protein biomarkers from the entire PPI (Fig. 3D). 
The constructed network included a total of 79 interactions, 
showing a density of 24.31%. TMPRSS5, an upregulated protein, 
showed the highest node degree by interacting with seven other 
biomarkers, followed by MDGA1, a downregulated protein, which 
related to six biomarkers. The average of node degrees for upreg-
ulated and downregulated proteins were almost similar, 3.00 and 
3.06, respectively. Additionally, more interactions were observed 
between proteins within the same group, with 43 intragroup 
interactions and 36 intergroup interactions. The average of edge 
weights for intragroup interactions was 0.33, which was 31.02% 
higher than that of 0.25 for intergroup interactions. 

Performance evaluation 
Experimental settings 
The performance of GPN for dementia subtype classification was 
evaluated by comparing those of seven different methods: GCN 
[20], SGC [26], EGC [27], LGC [27], MixHop [28], UGCN [29], and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae428#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae428#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae428#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae428#supplementary-data
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae428#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae428#supplementary-data
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Figure 3. Results for plasma protein biomarkers identification. Of the 90 assayed plasma proteins, 22 and 9 proteins were differentially expressed in AD  
and VD, respectively (A). For dementia subtype diagnosis, 9 upregulated and 17 downregulated proteins were identified as plasma protein biomarkers 
(B). GO analysis revealed that 11 GO terms were significant for the 26 plasma protein biomarkers, where five terms were common to the total 90 proteins 
and six terms were specific to the identified biomarkers (C). The interaction network for the identified biomarkers was constructed based on the entire 
PPI (D). The averages of node degrees for upregulated and downregulated proteins were almost similar, and both the number and weight of intragroup 
edges were observed to be greater than those of intergroup edges. 

MOGCN [ 30]. For GPN, the smoothness parameter μ was variated 
in the range of

{
10−2 , 10−1 , 1, 101 , 102}, and the combining coeffi-

cient α was set to 0. The model architecture of the comparison 
methods was constructed with reference to the best performance 
reported in each paper. Therefrom, the maximum order of inter-
action between proteins that reflected in those methods were 2 

for GCN and SGC, 3 for EGC, 4 for MixHop and UGCN, 5 for LGC, 
and 6 for MOGCN. All models, including GPN, were trained using 
the ADAM optimizer [52] with a learning rate of 0.001, and the 
performance was measured by area under the receiving operating 
characteristic curve (AUROC), and area under the receiving preci-
sion–recall curve (AUPRC).
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Figure 4. Performance comparison results. The AUROC performance of GPN was compared with that of seven existing methods (A). GPN showed the 
best performance, with an average of 10.4% higher than the comparison methods (B). The AUPRC performance was also compared (C), and GPN again 
derived the best result, with an average of 5.9% higher than others (D). Comparing the average predicted probabilities of dementia subtypes for each 
diagnostic group, GPN made the most distinctive diagnoses for MCI and AD and slightly clearer for VD (E). 

Performance comparison 
At first, the AUROC performance of all methods ranged from 0.65 
to 0.79, with an average performance of 0.7223 (Fig. 4A). Of those, 
the GPN performed the most accurate diagnosis with an AUROC 
of 0.7855, and, as a baseline method, GCN showed the lowest per-
formance with an AUROC of 0.6521. The multiplied convolution 
filter–based methods, SGC, EGC, and LGC, showed AUROC perfor-
mance of 0.6840, 0.7081, and 0.7279, respectively, with an average 
of 0.7067. On the other hand, the parallelized network architec-
ture–based methods, MixHop, UGCN, and MOGCN, showed AUROC 
performance of 0.7364, 0.7380, and 0.7466, respectively, with an 
average of 0.7403, which is 4.76% better than that of the for-
mer methods. The GPN indicated an average of 10.4% improved 
AUROC performance compared to other methods (Fig. 4B). The 
AUROC improvement by GPN was more pronounced in methods 
reflecting low-order interactions. These results imply a tendency 
for the maximum order of interaction and performance to be 
proportional and suggest that the GPN was able to produce the 
best results by reflecting global interaction. The characteristics in 
the AUROC comparison results are also confirmed in the AUPRC 
comparison results (Fig. 4C and D). Additionally, we compared the 
average values of individual probabilities for dementia subtypes 
by the corresponding diagnostic groups (Fig. 4E). The GPN yielded 
the highest probability on average and more clearly predicted 
MCI and AD participants. For VD diagnosis, although GPN did not 
show the highest probability, its result was 3% higher than the 
average. 

Empirical analysis 
We further conducted empirical analysis on the discriminative 
power of GPN. At first, the difference between the independent 

effect X with the combined effect Z according to dementia sub-
types was investigated. The individual average values of the pro-
tein biomarkers for each effect were calculated and compared 
by dementia subtypes (Fig. 5A). The most pronouncing feature 
between the two effects was the difference between AD and VD 
groups. In the independent effect, the difference between AD and 
VD groups was not significant. On the other hand, the combined 
effect indicated the significant difference between the two groups 
with P-value under 10−3. We also tested the discriminative power 
of the combined effect in five traditional ML algorithms: Support 
Vector Machines (SVM), Naïve Bayes Classifier (NBC), K-Nearest 
Neighbor (KNN), Linear Discriminant Analysis (LDA), and Decision 
Tree Model (DTM). The average performance of the five algorithms 
when training the combined effect was AUC 0.6235, which was 
13.6% higher than the average performance of AUC 0.5490 when 
training the independent effect (Fig. 5B). As a result, the combined 
effect by GPN indicates that there is a significant difference 
between all dementia subtype groups, and this discriminative 
power importantly contributes to dementia subtype diagnosis 
using other algorithms. 

Next, we observed the performance changes of GPN depending 
on the parameter variation (Fig. 5C). The smoothness parame-
ter μ was set to powers of 10 from 10−5 to 105, the combin-
ing ratio θ ranged from 0 to 1 in increments of 0.1. Therefrom, 
both parameters were variated to 11 levels, and the average 
AUC of each parameter level was compared. As the smoothness 
increasing, the performance remained almost unchanged until 
10−3, then increased slightly at 10−2, showing the maximum 
AUC at 1, and decreased sharply from 101 and continued to 
decline until 105. In the case of combining ratio, performance 
gradually improved until the level reached 0.5, after which the 
AUC gradually decreased and then sharply declined from 0.8.
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Figure 5. Results for empirical analysis on the discriminative power of GPN. Individual average values of protein biomarkers for the independent and 
combined effects were compared by dementia subtype (A). The combined effect by GPN showed significant differences between all subtypes, whereas the 
difference between AD and VD groups was ambiguous in the independent effects. The discriminative power of the combined effect was tested by using 
five traditional machine learning algorithms (B). All algorithms performed better when training the combined effect rather than the independent effect. 
Based on the performance comparison results according to parameter variation (C), it was observed that the discriminative power of GPN is maximized 
when the interactive effect derived by the smoothness near 1 is reflected in the combined effect with a similar proportion to the independent effect. 

The performance according to changes in the two parameters 
showed a similar pattern in which the AUC gradually increased 
until the two parameters reached a certain level, and then, the 
AUC rapidly decreased. Consequently, the combined effect derived 
by the smoothness and combining ratio around 1 and 0.5, respec-
tively, is most advantageous for exploiting interactions between 
proteins. 

Evaluation of the functional significance of the 
identified biomarkers 
Functional significance of the identified biomarkers was evalu-
ated by employing statistical and explanatory analyses, respec-
tively. In statistical analysis, we examined the aspects of changes 
in values for proteins and the significance of differences between 
dementia subtype groups. In explanatory analysis, the importance 
and impact on GPN of each protein were investigated by using the 
SHapley Additive exPlanations (SHAP) [53]. 

Statistical interpretation 
At first, the changed ratios of protein values and those signifi-
cance were derived by comparing the combined effect with the 
independent effect (Fig. 6A). The average ratio of change for all 
proteins was 2.1%, with 14 of them increasing and 12 decreasing. 
There were eight proteins with P-values <.05 regarding the change 
in value, three of them increased and the remaining five proteins 
decreased. In addition, the changed ratio in values of proteins 
according to parameter variation were compared by upregulated 
and downregulated groups (Fig. 6B). As smoothness increased 
and the interaction effect accounted for a larger portion of the 

combined effect, the values of upregulated and downregulated 
proteins increased and decreased at higher rates, respectively. 
However, the magnitude of change was much larger for upregu-
lated proteins than for downregulated proteins. 

Next, we compared the significance of differences in protein 
values for each dementia subtype group indicated by the inde-
pendent effect and the combined effect, denoted as Pgroup|X and 
Pgroup|Z, respectively (Fig. 6C). The comparison results indicate that 
the P-values for protein values of the combined effect was lower 
on average than those of the independent effect, and that 19 
proteins were changed by GPN to values allowing for more clear 
distinction between group differences. Furthermore, as biomark-
ers where Pgroup|Z is smaller than Pgroup|X were denoted by dis-
criminative proteins, their frequencies according to parameter 
variation were compared. Overall, the frequency was high for 
the smoothness between 10−2 and 101 and the combining ratio 
between 0.3 and 0.6, and the highest frequency observed when μ 
was 1 with θ between 0.3 and 0.5. 

Explanatory analysis 
The combined effect of GPN was explained by SHAP values derived 
by applying XGboost classifier trained on the discovery cohort to 
the validation cohort. First of all, the importance of the biomark-
ers in GPN was measured (Fig. 7A). SMPD1 was revealed to be 
the most important protein, followed by NBL1 and MANF. Those 
three biomarkers were upregulated proteins: SMPD1 and MANF 
were VD-specific, and NBL1 was common to AD and VD. Then, we 
selected 12 biomarkers with absolute SHAP values exceeding the 
overall average as core proteins. Comparing the average of SHAP
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Figure 6. Statistical analysis results for GPN interpretation. The difference between the independent and combined effects was compared by calculating 
the change in protein values and its significance (A), including changing patterns for the values of upregulated and downregulated proteins by variating 
parameters in GPN (B). Additionally, the two effects were compared by examining the significance of the difference between diagnostic groups for each 
protein (C). The frequencies of proteins in the combined effect indicating significant differences between dementia subtypes were also analyzed through 
the parameter variation (D). 

values for core proteins for all dementia subtypes ( Fig. 7B), TNR 
showed the highest, followed by THY1 and SMPD1, and only these 
three proteins presented positive values due to the low proportion 
of AD and VD participants in the validation cohort. The remaining 
nine core proteins all indicated the average of SHAP values <0, 
with CD200 showing the lowest value. 

In order to clarify the impact of core proteins on the diagnosis 
of each dementia subtype, SHAP values were analyzed by divid-
ing them into subtypes, and the results include the individual 
expected value f and comparison of SHAP values between groups 
according to its positivity and negativity. First, there were 72 
participants whose expected values for MCI were positive (fMCI+), 
∼60% of the validation cohort, and the remaining 49 partici-
pants showed fMCI– (Fig. 7C). Through the heatmap for individ-
ual SHAP values, TNR and NBL1 showed the greatest influence 
on the increase and decrease in fMCI, respectively. Moreover, we 
compared the contributions of core proteins in fMCI+ and fMCI– 

groups by calculating the group-wise average of SHAP values 
for each biomarker. SMPD1 and THY1 showed remarkable dif-
ferences between two groups in that both proteins increased 
fMCI+ while decreasing fMCI–. Although TNR, MSTN, NRP2, and 
NBL1 also showed notable differences, they contributed to the 
common increase or decrease in both groups. Second, the indi-
vidual expectations for AD were divided into 32 fAD+ and 89 fAD– 

participants (Fig. 7D). NBL1 represented the noticeable individual 
SHAP value through the overall increase of the expected value 
for AD diagnosis. The group-wise comparison results indicated 
that MDGA1 and ROBO2 contribute the most to clarifying the 

differences between fAD+ and fAD– groups. The effects of TNR and 
CPM were also significant, with both having a particular impact on 
decreasing fAD– and increasing fAD+, respectively. Last, because the 
validation cohort included a small number of participants with 
VD, only 13 participants were included in the fVD+ group, while 
the remaining 108 were fVD– (Fig. 7E). Therefrom, individual SHAP 
values of core proteins were generally <0, but SMPD1, CD200, and 
CPM contributed significantly to increasing the expected value for 
the fVD+ group. By simultaneously decreasing the expectations in 
the fVD– group, those three proteins played a key role in clarifying 
the differences between groups. 

Discussion 
In this study, dementia subtype diagnosis based on plasma 
protein biomarkers was performed by a two-stage approach. 
First, by comparing the MCI group with the AD or VD groups, 
26 plasma proteins with significant differences in expression 
were selected as biomarkers. Our findings included well-
known dementia-associated protein biomarkers, such as BMP4, 
CD200, MANF, PLXNB1, PLXNB3, and SMPD1 for AD [54–59] and  
BCAN, NCAN, and THY1 for VD [60, 61], as well as uncovering 
novel proteins associated with AD or VD. Subsequent analysis 
confirmed that the identified biomarkers were functionally 
related to the nervous system. Next, the identified plasma 
protein biomarkers were applied to the proposed model GPN 
for dementia subtype diagnosis. The most pronouncing feature 
of GPN is that the independent effect is propagated on the PPI
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Figure 7. Explanatory analysis results for GPN interpretation. The importance of plasma protein biomarkers for diagnosing dementia subtypes was 
calculated by deriving SHAP values (A). Protein biomarkers with higher importance than the overall average were selected as core proteins, and the 
patterns of SHAP values were investigated (B). To identify effects of core proteins to the diagnosis, SHAP values were examined for each dementia 
subtype. By comparing individual expected values into positive and negative groups, the contribution of core proteins to the diagnosis of MCI, AD, and 
VD was clarified (C–E). 

network, and therefrom, the interactive effect between proteins 
is extracted. This process enables the GPN to reflect global 
range of protein interactions, equivalent to the infinite order of 
PPIs. The predicted outcomes are derived after combining the 
independent and interactive effects. Experimental results on the 
Korean cohort presented that the differences between diagnostic 
groups were more remarkable in the combined effect and that 
the performance of GPN was better than existing methods by 
10.4% on average. We also showed that the combined effect can 
be used for any classifier by improving the original performance. 
Furthermore, the contribution of biomarkers to the diagnostic 
results of each dementia subtype was confirmed, and therefrom, 

several proteins were identified as key factors for diagnosing MCI, 
AD, and VD. 

At last, we investigated the utility of GPN in a real-world 
clinical setting by assessing its compatibility with key medical fac-
tors for diagnosing dementia subtypes (Supplementary Table S7). 
First, the predicted dementia subtypes were compared to clini-
cally important test items: MMSE, CDR-SB, and GDS (Fig. 8A–C, 
respectively). The AD-predicted and VD-predicted groups showed 
lower cognitive function than the MCI-predicted group, and the 
degree of deterioration in the AD-predicted group was the highest. 
Next, our prediction results were compared to neuroimaging-
based biomarkers: amyloid-β deposition (Aβ), neurodegeneration

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae428#supplementary-data
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Figure 8. Comparison of clinical and diagnostic characteristics based on the predicted outcomes by GPN. Dementia subtype diagnosis results for the 
validation cohort were compared with clinically important test items: MMSE (A), CDR-SB (B), and GDS (C). The predicted outcomes were additionally 
compared with neuroimaging-based diagnostic biomarkers: Aβ deposition (D), neurodegeneration (E), and vascular neuropathology (F). By combining 
the comparison results, patterns for dementia subtypes were derived in terms of clinical characteristics and neuroimaging biomarkers (G). 

(MTA), and vascular neuropathology (WMH) ( Fig. 8D–F, respec-
tively). The positivity rates for Aβ and WMH were highest for 
the AD-predicted and VD-predicted groups, respectively, with the 
lowest MTA positive rate for the MCI-predicted group. Finally, the 
comprehensive patterns for each dementia subtype were derived 
by integrating comparison results (Fig. 8G). In sum, the predicted 
outcomes showed high compatibility compatible with the key 
medical factors, suggesting that the GPN may be a clinically useful 
tool for diagnosing dementia subtypes. 

Here are some remarks on the method we proposed. First, a 
more precise diagnosis of dementia subtypes through the GPN 
is achievable by assaying a larger number of plasma proteins. 
Our findings are limited to proteins in the Olink Neurology 
panel. Although the proteins belonging to this panel may be 

strongly associated with dementia, it is plausible that significant 
biomarkers could also be discovered in other panels focusing 
on inflammation, cell regulation, and metabolism. Therefore, 
employing additional protein assay panels provides greater scope 
for advancements in diagnosing dementia subtypes based on 
plasma protein biomarkers. Second, the GPN can be further 
advanced through the optimization of protein interactions. In 
this study, the GPN utilized the combined score of PPI, which 
simply multiplied seven types of interaction scores. However, 
the contribution of each type to the diagnosis of dementia 
subtypes varies. Furthermore, the impact of interaction will 
be different for each protein. Therefore, the GPN will become 
more technically sophisticated by optimizing interaction types 
and differentiating the impact of interactions for each protein.
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Third, the real-world applicability of GPN for routine patient 
screening can be enhanced by incorporating neuroimaging-based 
diagnostic markers. Although the proposed method predicts 
the diagnosis of AD and VD by clinicians with high accuracy, 
there may be interclinician variability in the medical opinions 
regarding patients’ conditions. Accordingly, the use of GPN for 
neuroimaging-based outcomes that can be objectively judged 
may improve its real-world applicability in clinical settings. 
Additionally, developing a panel of plasma protein biomarkers 
specific to neuroimaging-based dementia subtypes and a GPN-
based software that learns from the data generated could be of 
great clinical value. Therefore, as a follow-up study, we aim to 
extend the application of GPN to the prediction of neuroimaging-
based diagnostic markers to improve its clinical practicality. 
Finally, GPN is scalable to various domains where interactions 
between entities significantly affect the target outcome. In 
those domains, such as chemical interaction, brain connectivity, 
genomic polymorphism [62], and social network, a wide range of 
interactions need to be considered in that there will be chained 
diffusion arise from synergistic effects by entity interactions. The 
global awareness of interactions in GPN will be beneficial for 
tasks in those domains. Moreover, as the experiment suggests, the 
propagation process in GPN can benefit any classifier. Therefore, 
leveraging interactive effects will be even more useful. 

Key Points 
• Plasma protein biomarkers have been considered as 

promising tools in diagnosing dementia subtypes and 
sophisticated by utilizing machine learning (ML). 

• Although various graph convolutional networks can 
alleviate the limitation of previous ML-based studies 
that exclude interactions between proteins, they still 
have issues originated by their local awareness. 

• The proposed method extracts the globally interactive 
effect between proteins that propagates the independent 
effect on the protein–protein interaction (PPI) network. 

• The global awareness for PPI in our model significantly 
contributes to improve performance of dementia sub-
type diagnosis compared to the existing methods. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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