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Abstract: Presbycusis, also referred to as age-related hearing loss (ARHL), is a multifaceted condition
caused by the natural aging process affecting the auditory system. Genome-wide association studies
(GWAS) in human populations can identify potential genes linked to ARHL. Despite this, our
knowledge of the biochemical and molecular mechanisms behind the condition remains incomplete.
This study aims to evaluate a potential protective tool for ARHL treatment by comparing human
blood-based target gene-miRNA associations regulated in ARHL. To identify promising target genes
for ARHL, we utilized an mRNA assay. To determine the role of miRNA in ARHL, we investigated
the expression profile of miRNA in whole blood in ARHL patients with real-time polymerase chain
reaction (RT-qPCR). A reporter gene assay was performed to confirm the regulation of candidate
genes by microRNA. Through RT-qPCR validation analysis, we finally confirmed the relationship
between ARHL and the role of the interferon-gamma (IFNG) gene. This gene can be regarded as
an age-related gene. Through gene ontology (GO) analysis, it has been found that these genes are
enriched in pathways related to apoptosis. Among them, IFNG induces an inflammatory response,
apoptotic cell death, and cellular senescence. We found that miR-409-3p downregulates the expression
of the IFNG in vitro. In addition, the downregulation of the IFNG by miRNA 409-3p promoted cell
apoptosis and suppressed proliferation. In conclusion, our study produced gene signatures and
associated microRNA regulation that could be a protective key for ARHL patients. IFNG genes and
miR-409-3p should be investigated for their usefulness as a new biomarker for treatment modality.

Keywords: hearing loss; senescence; miRNA; IFNG; P16

1. Introduction

Inflammation has become a focal point in biomedical research on age-related condi-
tions. As tissues age, the body undergoes a process called ‘chronic inflammation’. This
low-grade, age-related inflammation, also known as ‘inflammaging’, progressively worsens
over time [1]. Recently, the potential pathways of inflammation and its effect on age-related
hearing loss (ARHL) have received more and more attention in the field of hearing research.
Although the cochlea was traditionally thought to be an immune-privileged organ [2], re-
cent research has demonstrated its susceptibility to systemic inflammation [3,4]. Prolonged
activation of inflammatory cytokines, including IL-1α, IL-2, TNF-α, and NF-κB, which play
critical roles in initiating, regulating, and amplifying immune responses, can penetrate
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cells within the inner ear, such as those in the endolymphatic sac [5,6]. Verschuur et al.
conducted human studies that demonstrated a link between hearing thresholds and key
serum biomarkers of low-grade inflammation [7]. They found associations between the
average hearing thresholds in elderly individuals and their levels of IL-6, C-reactive protein
(CRP), white blood cell counts, and neutrophil counts. Lowthian et al. also highlighted
the potential therapeutic advantages of low-dose aspirin, a mild anti-inflammatory agent,
for ARHL [8]. This finding adds to the growing body of evidence suggesting that chronic
inflammatory processes are key mechanisms behind age-related conditions.

One promising method for identifying genetic variants that contribute to ARHL is the
use of a genome-wide association study (GWAS), which screens a large number of genetic
markers throughout the genome for associations with the trait of interest. Trpchevska
et al. performed a meta-analysis of GWASs in a large sample of 723,266 individuals who
had self-reported or clinically diagnosed hearing impairment [9]. The study identified
a total of 48 loci that were significantly associated with hearing impairment, including
10 loci that had not been previously reported. Additionally, Ivarsdottir et al. demonstrated
that a combined cohort from Iceland and the UK Biobank (totaling 121,934 individuals
identified through pure-tone audiograms and self-reported hearing difficulties) revealed
21 new associations, including 13 rare variants [10]. This study performed analysis for
RNA sequencing data from ARHL patients and found 11 genes related to ARHL.

MicroRNA(miRNA)s are a class of small, non-coding RNA molecules that occur natu-
rally within organisms. Typically, miRNAs are 20–23 nucleotides long, and they function
by binding to specific target messenger RNA (mRNA) transcripts via complementary base
pairing [11]. The interaction between miRNAs and their target mRNA molecules can
lead to gene silencing, translational repression, or target degradation. It is estimated that
miRNAs have the potential to target up to 60% of all genes, and each miRNA can affect the
expression of hundreds of target genes [12]. Recent studies have revealed differences in
miRNA expression in the inner ear of two mouse strains, C57BL/6J and CBA/J, which are
frequently used in research on aging and age-related diseases due to the unavailability of
human-derived samples. In the context of age-related hearing loss (ARHL), 111 miRNAs in
C57 mice and 71 miRNAs in CBA mice showed differential expression [13]. Among these,
downregulated miRNAs were more common than upregulated ones. Zhang’s research
further identified miRNAs associated with the aging of the cochlear duct’s lateral wall,
in addition to the organ of Corti. Downregulated miRNAs, such as those from the miR-
183 and miR-181 families, were linked to proliferation and differentiation pathways [14],
whereas upregulated miRNAs, including members of the miR-29 and miR-34 families,
were implicated in pathways that activate or enhance apoptosis, involving genes like p53,
p27, and Bcl2 [15]. While miRNAs are recognized for their roles in regulating cellular
proliferation, differentiation, and growth within the inner ear, their function in the blood
concerning age-related hearing loss (ARHL) remains unestablished. Zhuoran et al. sug-
gested that miR-155 selectively interacts with the 3′untranslated region (3′UTR) of Stat1,
leading to the suppression of mRNA expression. Additionally, the absence of miR-155 leads
to the depression of IFN-γ-related transcription factors, offering a potential explanation
for the heightened IFN response observed in microglia lacking miR-155 [16]. Amado T
et al.’s research uncovered that within CD8+ T cells, miR-181a constrains the production
of IFN-γ by repressing the expression of the transcription factor Id2, consequently fos-
tering the activation of the IFNG expression program [17]. In another study, the miRNA
expression pattern was analyzed in melanoma cells undergoing IFN-γ-induced ferroptosis.
Subsequently, Weinan et al. demonstrated that the upregulation of miR-21-3p enhances
IFN-γ-triggered ferroptosis by promoting lipid peroxidation [18].

In the present study, we identified 11 potential genes by analyzing RNA sequencing
from ARHL patients. Among the identified genes, we focused on the profiles of the IFNG
gene, which is possibly involved in cochlear inflammation or ARHL. Moreover, we assessed
the preventive role of miR-409-3p on the expression of the IFNG gene.
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2. Materials and Methods
2.1. Ethics Statement and Study Population

The study protocol was approved by the Cheonan Hospital, Soonchunhyang Univer-
sity College of Medicine (IRB No. 2018-10-037). All participants gave written informed
consent to take part in the study. The research adhered to the Declaration of Helsinki and
received approval from the Institutional Review Board at Cheonan Hospital, Soonchun-
hyang University. Written consent was obtained from each participant. All the methods
applied in the study were carried out in accordance with the approved guidelines.

All enrolled participants underwent a physical examination of both ears and a hearing
test by the pure tone audiometry in a quiet chamber by an interacoustic AC-40 (Interacous-
tics, Middlefart, Denmark) clinical audiometer according to the manufacturer’s instructions.
The inclusion criteria for the normal hearing group (NH) were defined by the average
hearing threshold ≤ 25 dB at 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, and 40,000 Hz, and those
of the ARHL group were defined by the average hearing threshold ≥ 40 dB at 250 Hz,
500 Hz, 1000 Hz, 2000 Hz, and 40,000 Hz, respectively. On the other hand, the exclusion
criteria of the present study were a history of acute or chronic infection or symptoms of
infection, hypertension, diabetes mellitus, chronic renal disease, or other otological diseases
or surgery.

2.2. Isolation of Peripheral Blood Mononuclear Cells (PBMCs) from Human Blood and the mRNA
Differentiation Expression Assay

Blood samples were collected from 12 individuals in the normal hearing group
(28 ± 12.89 years, male:female = 5:7) and 12 individuals in the ARHL group (68 ± 8.56 years,
male:female = 7:5). RNA extraction was performed using the QIAamp RNA Blood Mini
Kit (Qiagen, Hilden, Germany), following the manufacturer’s protocol. The extracted
RNA was quantified using a Nanodrop spectrophotometer, and these samples were sub-
sequently used for RT-qPCR analysis. Collected blood was gently mixed in EDTA tubes
and layered onto Ficoll-Paque (1:1 ratio). After centrifugation at 277 rcf for 30 min at
room temperature without a break, the PBMC layer was collected, washed with 1× PBS
(pH 7.4), and centrifuged at 277 rcf for 10 min again. The supernatant was discarded, and
the cells were resuspended in 1× PBS for RNA extraction. RNA samples were analyzed
using the NanoString nCounter Analysis System (NanoString Technologies, Inc., Seat-
tle, WA, USA) [19], following the manufacturer’s guidelines. A 5 µL aliquot (containing
100–300 ng of RNA) was combined with 8 µL of Master Mix, which included the reporter
CodeSet and hybridization buffer. Next, 2 µL of capture probe set were added. The mixture
was thoroughly mixed and centrifuged. It was then incubated in a thermocycler (Bio-Rad
Laboratories Inc., Hercules, CA, USA) at 65 ◦C for 16 h (with a maximum hybridization
time of 48 h). After incubation, samples were transferred to a preparation station (NanoS-
tring Technologies, Inc.), where they were bound to a cartridge using the nCounter Master
Kit. The preparation station, which accommodates 12 lanes, operated for approximately
2.5 to 3 h. Following this, the cartridges were moved to a digital analyzer (NanoString
Technologies, Inc.) for analysis. The digital analyzer then scanned the cartridges across
555 fields of view.

2.3. Quantifying Gene Expression and Differentially Expressed Gene Analysis

The initial step in quantifying gene expression values involved the analysis of normal-
ization using the geNorm algorithm [20] within nCounter Advanced Analysis ver2.0.115
(NanoString Technologies, Inc.) [21]. Subsequently, differentially expressed genes between
the chosen biological conditions were assessed using default parameters. To analyze ex-
pression profiles across samples, unsupervised clustering of normalized expression values
for a chosen subset of differentially expressed genes was conducted using nCounter Ad-
vanced Analysis version 2.0.115. This software was also employed to create plots showing
gene expression values and a volcano plot for fold-changes in expression. To understand
the biological roles of differentially expressed genes across various conditions, a gene set
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enrichment analysis was performed. This analysis involved comparing the differentially
expressed genes with functionally categorized gene sets, including those related to bi-
ological processes in gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, and other functional gene sets. g:Profiler [22] and clusterProfiler [23]
were employed for this purpose.

2.4. Validation of Target Gene Expression (RT-qPCR)

To validate the expression of candidate genes identified from mRNA sequencing re-
sults, RT-qPCR was employed with whole blood of the NH and ARHL patients
(Table 1). The reverse transcription reactions were carried out according to the manu-
facturer’s protocol using the miScript II RT Kit (Qiagen, Hilden, Germany). To perform
RT-qPCR, 2 µL of 5× miscript HiFlex Buffer, 1 µL of 10× miScript Nucleics Mix, 1 µL of
miScript Reverse Transcriptase Mix, and 1 µg of Template RNA were mixed. Then, RNase-
free water was added to make a total volume of 10 µL. RT-qPCR was conducted using
an ABI StepOnePlus instrument (Thermo Fisher Scientific Inc., Waltham, MA, USA) and
associated software. RT-qPCR was performed with initial denaturation at 95 ◦C for 10 min,
followed by 40 amplification cycles. Each cycle consisted of 30 s at 95 ◦C for denaturation,
30 s at 60 ◦C for annealing, and 1 min at 72 ◦C for extension. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) served as the internal control, and the analysis was performed
using SYBR Green. The expression levels of each target gene relative to GAPDH were
measured using the 2-∆∆Ct method. To identify target genes of miRNAs, experimentally
validated miRNA-target gene pairs were retrieved from MirTarBase [24]. Additionally,
mature miRNA sequences were obtained from the miRBase database [25].

Table 1. The sequence of primers used in the RT-qPCR experiments.

Name Forward Primer Reverse Primer

ADAM12 CAGGAAGGCTTGTTGTGCTT TTGGGATCTCTTGAGCTGCA
FLT1 GACTGACAGCAAACCCAAGG TAGATGGGTGGGGTGGAGTA

TNFRSF25 TTCTAGCACCTCCTGACAGC ACAGGAGAATGGGGTCAAGG
IFNG GGGGCTCAGTTTCCTCATCT TAGAGACTTGCAGTGGGGTG

TNFAIP6 TACTGGGAAGTTTGGCGCTA GTTCCTCTCCCTTCTCCCAC

2.5. Gene Ontology Enrichment Analysis for miRNA Related to IFNG

We conducted KEGG pathway enrichment analysis and gene ontology enrichment
analysis (covering Biological Processes, Cellular Components, and Molecular Functions)
to determine the functions of differentially expressed genes (DEGs). This was accom-
plished using the EnrichR database “http://amp.pharm.mssm.edu/Enrichr/ (accessed
on 17 November 2023)” [26]. The Database for Annotation, Visualization, and Integrated
Discovery (DAVID) “https://david.ncifcrf.gov/ (accessed on 17 November 2023)” was
utilized for differential gene analysis, pathway enrichment, and biological annotation. The
most significantly enriched terms were identified based on a p-value threshold of <0.05,
using Fisher’s exact test. Clustering analysis was visualized with a heatmap generated
through the web tool Morpheus “https://software.broadinstitute.org/morpheus (accessed
on 19 May 2024)”.

2.6. UTR Vector Construction and miRNA

IFNG Human 3′UTR clone (#SC208099, Origene Technologies, Rockville, MD, USA)
and miRNA 409-3p (HmiR0244-MR04-10, GeneCopoeia, Rockville, MD, USA) were em-
ployed for transfection. The IFNG 3′UTR clone was utilized with the pMirTarget 3′UTR
assay vector, which serves as a cloning vector for 3′UTR clones for miRNA target valida-
tion. The assay reporter is luciferase, and E. coli DH5α: selection can be achieved through
kanamycin resistance. The insert size is 615 bp. miRNA-409-3p was constructed using the
pEZX-MR04 vector, with puromycin as the selection marker, and its mature sequence is
represented as gaauguugcucggugaaccccu.

http://amp.pharm.mssm.edu/Enrichr/
https://david.ncifcrf.gov/
https://software.broadinstitute.org/morpheus
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2.7. Cell Culture and Transfection

The House Ear Institute-Organ of Corti 1 (HEI-OC-1) cells of mice were incubated at
37 ◦C with a 5% concentration of carbon dioxide and harvested 10% FBS DMEM (Dulbecco’s
Modified Eagle’s Medium, Welgene, Gyeongsan, Republic of Korea). The cells were main-
tained within a range of 70–90% confluency during the experiments. HEI-OC-1 cells were
seeded into a 6-well plate at a density of 1.5 × 105 cells per well. After seeding, 24 h later,
transfections were performed using Lipofectamine 3000 (Invitrogen, Waltham, MA, USA)
with the IFNG 3′UTR clone (Origene Technologies) and miRNA-409-3p (GeneCopoeia).
The mixture was incubated at room temperature for 15 min according to the manufacturer’s
protocol and then applied to the cells. Subsequently, the cells were incubated at 37 ◦C for
1–2 days.

2.8. Dual-Luciferase Reporter Assay

We used the Dual-Luciferase Reporter assay system (DLR assay system, Promega
Corporation, Madison, WI, USA) to conduct dual-reporter assays with pmiRGLO-based
reporter systems. The DLR assay system measured luciferase activity in cells co-transfected
with 3′UTR-IFNG vectors and the pmiRGLO control vector. Twenty-four hours post-
transfection, the growth medium was removed, and cells were gently rinsed with phosphate-
buffered saline. Next, 200 µL of passive lysis buffer (Promega, USA) were added to each
well, and the plates were gently rocked for 15 min at room temperature. The cell lysates
were then collected for the Dual-Luciferase Reporter assay. In white opaque 96-well plates
(Corning Inc., New York, NY, USA), 20 µL of cell lysates were transferred. The firefly and
renilla luciferase activity assays were conducted sequentially on the cell lysates in each
well. To normalize for cell numbers and transfection efficiency, the pmiRGLO vector was
used as an internal control, and the relative luciferase activity was calculated as the ratio of
firefly/renilla luciferase activity.

2.9. Western Blot Analysis

Cells were lysed using RIPA buffer, which consisted of 25 mM Tris-HCl (pH 7.6),
150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% SDS. Proteins were quantified
using a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific Inc.). Cell lysates containing
equal amounts of protein were loaded onto a 4–15% SDS polyacrylamide precast gel (Bio-
Rad Laboratories Inc.) and subjected to electrophoresis at 70 V for 3–40 min, followed by
110 V for 5–60 min. The following protein replication was repeated three times. Addition-
ally, the loaded proteins were transferred to the PVDF membrane and blocked with 5% BSA
for 1 h at room temperature. After blocking, the membranes were incubated overnight at
4 ◦C, including gentle shaking with primary antibodies (1:1000, IFN-γ, p16 antibody, Cell
Signaling Technology, Danvers, MA, USA). Additionally, the membranes were incubated
at room temperature for 2 h with horseradish peroxidase (HRP) conjugated secondary
antibodies (1:3000, Cell Signaling, USA). Each protein was normalized to β-actin (1:5000,
Cell Signaling, USA), and finally, blots were detected using Super Signal West Atto Ultimate
Sensitivity Chemiluminescent Substrate (Thermo Fisher).

2.10. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 9.5.0, Graphad Software Inc.,
Boston, MA, USA. All statistical analyses were conducted using one-way ANOVA (and
nonparametric). Graphs were presented as mean ± SD, and significance among groups
was determined using the Bonferroni post hoc test. Values were considered significant
when p < 0.05.
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3. Results
3.1. Inverse Correlation of IFNG and Putative Target miRNAs in the Whole Blood between NH and
ARHL Groups

We analyzed the expression profiles of our target genes using Nanostring-mRNA
assay data obtained from PBMCs of individuals with ARHL. Figure 1A presents a heatmap
depicting the differential expression in mRNA levels. Figure 1B is a Venn diagram showing
the number of genes up or downregulated in patients with age-related hearing loss based
on mRNA assays in human blood. Figure 1C portrays a volcano plot representing the
expression levels of candidate genes, while Figure 1D presents a scatter plot.
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Figure 1. (A) The heatmap for the mRNA assay displays the 11 genes with the greatest increases or
decreases in ARHL. The color gradient, ranging from blue to red, represents low to high levels of
expression (hierarchical clustering is shown on the left of the heatmap). (B) Venn diagram illustrates
the number of genes either up or downregulated in ARHL patients based on the mRNA assay in
human blood. There are 11 genes included (p-value ≤ 0.05 and |Fold Change| ≥ 2). (C) A volcano
plot was generated to visually represent the expression levels of candidate genes. The red dots
represent a TRUE value for significance in the plot. (D) Scatter plot. Abbreviations used are as
follows: RORC (Register of Registrable Controllers), ADAM12 (ADAM metallopeptidase domain 12),
FLT1 (Fms-related receptor tyrosine kinase 1), TNFRSF25 (TNF receptor superfamily member 25),
BIRC3 (Baculoviral IAP repeat-containing 3), EOMES (Eomesodermin), IFNG (interferon gamma),
GZMH (Granzyme H), TNFAIP6 (TNF alpha-induced protein 6), IFI27 (interferon alpha inducible
protein 27), and FPR3 (Formyl peptide receptor 3).

To validate the mRNA assay results of selected DEGs, RT-qPCR was conducted using
whole blood samples. Finally, among 11 genes, five genes showing correlation with RNA
sequencing results were found. In particular, the expression levels of the IFNG gene
exhibited statistically significant differences (adjusted p ≤ 0.05) between individuals with
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ARHL and their corresponding NH (Figure 2). As depicted in the figure, the expression
levels of IFNG were found to be higher in whole blood obtained from patients with ARHL
compared to NH (normal hearing group).
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Figure 2. (A–E) Gene sets using real-time RT-qPCR. The samples included whole blood from the NH
(normal hearing group) and ARHL. Gapdh served as an internal control, and the relative expression
levels of ADAM12, FLT1, TNFRSF25, IFNG, and TNFAIP6 were normalized to Gapdh. Statistical
significance was determined with ** p < 0.01. (A) Relative expression levels of ADAM12. (B) Relative
expression levels of FLT1. (C) Relative expression levels of TNFRSF25. (D) Relative expression levels
of IFNG. (E) Relative expression levels of TNFAIP6. Abbreviations used are as follows: NH (normal
hearing group), ARHL (age-related hearing loss), ADAM12 (ADAM metallopeptidase domain 12),
FLT1 (Fms-related receptor tyrosine kinase 1), TNFRSF25 (TNF receptor superfamily member 25),
IFNG (interferon gamma), and TNFAIP6 (TNF alpha-induced protein 6).

By specifically focusing on IFNG genes (Figure 3A), we analyzed their expression as
fold-changes in mRNA levels between the NH (n = 12) and ARHL (n = 12) groups. RT-qPCR
was employed to detect IFNG expression in whole blood (Figure 3B), revealing noteworthy
upregulation in IFNG expression in the ARHL group compared to the NH group. For
further investigation, we conducted RT-qPCR analysis to assess the expression of miR-
409-3p in whole blood samples from individuals with ARHL. Figure 3C demonstrates the
significant downregulation of miR-409-3p expression in the ARHL group compared to
the NH group, with the relative levels normalized to U6. Statistical analysis revealed a
* p < 0.05, indicating the significance of the observed differences.
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Figure 3. Inverse correlation between IFNG and potential target miRNAs in the whole blood of
normal hearing (NH) and age-related hearing loss (ARHL) samples. (A) Heat map illustrating mRNA
assay differential expression data. Heat map of IFNG genes involved expressed as the fold-change
in mRNA levels in the NH and ARHL groups (NH: n = 12, ARHL: n = 12). (B) The expression of
IFNG was further validated using real-time RT-qPCR in whole blood (NH: n = 9, ARHL: n = 11)
(C) Additionally, the expression of miR-409-3p was measured in whole blood using real-time RT-
qPCR, with U6 snRNA used as an internal control. The levels of miR-409-3p were normalized relative
to U6 (NH: n = 17, ARHL: n = 14). Statistical significance is denoted by * p < 0.05. Abbreviations
used are as follows: NH (normal hearing group), ARHL (age-related hearing loss), and IFNG
(interferon gamma).

3.2. IFNG Is a Direct Target of miR-409-3p in HEI-OC-1 Cells

To identify the potential regulators of IFNG expression in ARHL, we conducted
bioinformatics analyses. We used databases, such as miRTarBase and miRbase, to explore
target miRNAs for IFNG. Our investigation revealed a validated binding target site for
miR-409-3p in the 3′UTR of IFNG (Figure 4A). Next, we employed human IFNG vectors
(pmirGLO vector) with the firefly luciferase gene fused downstream. RT-qPCR analysis
indicated that miR-409-3p expression levels were significantly reduced in HEI-OC-1 cells
from the ARHL group compared to the NH group (Figure 3C). Additionally, luciferase
reporter assays showed a notable decrease in luciferase activity in HEI-OC-1 cells co-
transfected with the miR-409-3p vector and the 3′UTR of IFNG reporters. Importantly, off-
target miRNA did not negatively impact the putative binding site of miR-409-3p (Figure 4B).
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of the dual luciferase assay showing the interaction between miR-409-3p and the 3′UTR of IFNG in
HEI-OC-1 cells. ** p < 0.01. Abbreviations used are as follows: IFNG (interferon gamma).

3.3. miR-409-3p Regulates IFNG and p16 Expression

As is evident from the Western blot results (Figure 5), miRNA-409-3p regulates the
expression of the IFNG gene. To provide more robust evidence in this study, HEI-OC-1
cells were transfected with 1000 ng of the IFNG gene as an inducer and co-transfected
with varying concentrations of miRNA-409-3p. The results of IFNG gene detection showed
that as the concentration of miRNA-409-3p increased, the expression of the IFNG gene
decreased. Therefore, it can be concluded that the overexpression of miRNA-409-3p down-
regulates IFNG. Additionally, the detection of the senescence-related marker, p16, also
demonstrated that as the concentration of miRNA-409-3p increased, the expression of
the p16 protein decreased. The schematic diagram (Figure 5D) summarizing our study
revealed a significant upregulation of IFNG in PBMCs associated with ARHL. Our findings
demonstrated that miR-409-3p, possessing a binding site in the 3′UTR of IFNG, induced the
downregulation of IFNG and p16 signaling. This finding indicates that miR-409-3p could
serve as a potential biomarker for ARHL, which justifies further research and investigation.
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Figure 5. Western blot analysis was conducted as follows: (A) HEI-OC-1 cells were co-transfected
with 1000 ng of IFNG, miR-control, and varying concentrations (ng) of miR-409-3p, as illustrated.
The expression levels of IFNG, p16, and β-actin were subsequently detected using their respective
antibodies. (B) Quantification of IFNG expression in each lane was performed using β-actin as a
normalization control. (C) The p16 expression level in each lane was quantified using β-actin as
a normalization control. Statistical analysis revealed a high level of significance with ** p < 0.01
and **** p < 0.0001. (D) Summary schematic diagram of IFNG, miR-409-3p, and P16 signaling in
ARHL. Among the differential expression genes obtained through nanostring, IFNG was upregulated
with a fold change value of 2 or more in PBMCs with age-related hearing loss. miR-409-3p, which
has a binding site in the 3’UTR of IFNG, targeted and downregulated IFNG in HEI-OC1 cells
overexpressing IFNG. Additionally, the expression of P16INK4a, a well-known senescence marker,
was downregulated. Therefore, this suggests that miR-409-3p may be a potential biomarker for
ARHL. Abbreviations used are as follows: IFNG (interferon gamma).

4. Discussion

Through RNA sequencing and Western blot analysis, we confirmed that miR-409-
3p reduces the expression of IFNG and p16, highlighting its significant role in ARHL.
These findings suggest that different approaches are required for preventive treatments
or methods to address the various mechanisms of age-related hearing loss. Additionally,
analysis of single nucleotide polymorphism (SNP) and exploration of potential genetic
factors related to ARHL could be valuable directions for future research in this area.

IFN-γ functions as a cytokine with critical involvement in maintaining tissue homeosta-
sis, orchestrating immune and inflammatory responses, and contributing to the surveillance
of tumor immunity [27]. There are several studies on IFNG and senescence. Prolonged
in vitro exposure of cells to either IFN-β or IFN-γ induces premature senescence through
the activation of reactive oxygen species (ROS) and the DNA damage response (DDR)
signaling pathways [28]. Volpe, Eugene A. et al. provided evidence supporting the active
involvement of IFN-γ in the age-related loss of conjunctival goblet cells, providing insights
into the complex cytokine interactions underlying the development of dry eye [29]. In
addition to senescence, there are studies related to hearing loss and cochlear. The frequency
of T cells capable of producing IFN-γ was significantly increased in 25% of PBMCs from
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patients with autoimmune sensorineural hearing loss [30]. Moon, Sung K et al. illustrated
that through JAK1/2-STAT1 signaling, IFN-γ heightens the susceptibility of HEI-OC-1 cells
to TNF-α-induced cytotoxicity. This underscores the role of IFN-γ in sensitizing cochlear
cells to the cytotoxic effects of TNF-α [31]. In the present study, a transcriptome analysis
was conducted on human blood samples to investigate ARHL. These lists include six genes
that exhibited at least two-fold upregulation and five genes that exhibited at least two-fold
downregulation between the ARHL and NH groups, with adjusted p-values less than 0.05
in both populations. Through gene ontology analysis, it was found that these genes are
enriched in pathways related to the immune response and apoptosis. Among them, we
chose the IFNG gene because it induces an inflammatory response, apoptotic cell death,
and cellular senescence.

miRNAs are small non-coding RNAs that regulate gene expression and have been
implicated in various cellular processes. Several papers have been published on the topic
of miRNA and ARHL. Verónica Miguel et al. reviewed the current literature on how
environmental factors, such as noise exposure and stress, can alter miRNA expression
patterns in the inner ear, leading to hearing loss. They also discussed the potential for
miRNAs as biomarkers for hearing loss and as therapeutic targets for preventing or treating
hearing loss [32]. Zhang et al. focused on identifying miRNAs involved in ARHL by
analyzing the expression of miRNAs in the organ of Corti, the sensory epithelium of the
inner ear. The authors used a mouse model of ARHL and found that the expression of
several miRNAs is altered in the organ of Corti during the progression of hearing loss.
They suggested that these miRNAs may play a role in the degeneration of the organ of
Corti and offer potential targets for therapeutic interventions [13]. miR-34a and miR-155
contribute to ARHL by targeting the SIRT1 deacetylase. This 2013 study published in Nature
Communications investigated the role of miRNAs in ARHL using a mouse model. The study
identified miR-34a and miR-155 as key regulators of the SIRT1 deacetylase, which plays a
role in the maintenance of inner ear function [33]. Lee et al. reported that hsa-miR-409-3p
was upregulated in senescent endothelial progenitor cells (EPCs), where it functioned as
a negative regulator of angiogenesis by targeting the PPP2CA gene and modulating the
PP2A/p38 signaling pathway [34]. Our findings from human PBMCs support the potential
of hsa-miR-409-3p as a biomarker for human aging. Another study demonstrated that the
concurrent upregulation of miR-30a-5p and miR-409-3p, along with the downregulation
of miR-30a-3p and miR-181a-5p, can replicate cellular senescence in vascular endothelial
cells [35]. This approach offers a single-step method for inducing senescence, as opposed
to the more time-consuming process of replicative passage senescence. The present study
showed that miR-409-3p was confirmed to regulate the target gene, IFNG. The expression
of the IFNG gene and miR-409-3p were found to be directly inversely correlated to each
other. To date, IFNG has been known as a target gene of miR-409-3p. It is known that the
decrease in DGCR8 in ITP leads to the downregulation of miR-409-3p, which is related
to the upregulation of IFNG [36]. In the present study, we discovered for the first time
that miR-409-3p is a target miRNA of IFNG in hearing loss. The function of miR-409-3p in
ARHL may be more complex than expected, as each miRNA is known to have the ability to
regulate multiple genes, and many other miRNAs are also involved in ARHL. Therefore,
further research on the relationship seems necessary.

The occurrence of aging and many diseases can be attributed to chronic inflammation.
Interferons play a crucial role in the immune system’s defense against viral infections.
Interestingly, in mammalian hosts, various tissues and organs that undergo aging continue
to show alterations resulting from the activation of the interferon pathway [37]. The
regulation of senescence involves the following two primary pathways: p21 and p16 [38,39].
A previous study revealed that p16 is the main factor responsible for accelerated senescence
in vitiligo melanocytes [40] or normal melanocytes at high passage levels [41]. p16 INK4a
forms a direct binding interaction with CDK4/6, preventing the phosphorylation of the
retinoblastoma tumor suppressor (Rb) and initiating growth arrest from the G1 to S phase
in the cell cycle [42,43]. The function of p16 INK4a involves the inhibition of the activity
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of cyclin-dependent kinase (CDK), and prolonged expression of p16 INK4a results in the
induction of cellular senescence. Consequently, precise control of p16 INK4a is imperative
to uphold a meticulous equilibrium between the suppression of tumors and the promotion
of senescence [44]. According to a study conducted by Almontashiri, Naif A M et al.,
in every cell type examined, with the exception of HUVECs, where interferon-γ did not
alter expression, the upregulation of p16 and p15 was observed irrespective of the 9p21.3
genotype [45]. In another study, it was referred to as interferon-γ–inducible protein p16 [46].
In the present study, we found that the expression of p16 in HEI-OC-1 cells was affected
by IFN-γ and miR-409-3p treatment. We hypothesized that the induction of senescence
in HEI-OC-1 cells by IFN-γ was mediated through p16. However, it is not clear by which
mechanism and pathway miR-409-3p regulates p16 signaling, and further research on
animal models is needed.

Hearing disorders can be caused by a range of ototoxic factors, including prolonged
and loud noise, vibrations, gentamicin, ionizing radiation, cisplatin, high doses of aspirin,
bacterial and viral infections, genetic mutations, and aging. As miRNAs are highly ex-
pressed in the inner ear, variations in the levels of miRNAs could potentially contribute to
the pathogenesis of hearing disorders. However, signals that cause these changes in the
expression of miRNAs remain unclear. Increased oxidative stress and inflammation are
major contributors to the pathogenesis of hearing defects induced by ototoxic agents [47].
These conditions are also known to play a central role in neurodegenerative diseases,
including Alzheimer’s disease. Reactive oxygen species (ROS) and pro-inflammatory cy-
tokines are likely involved in mediating the harmful effects of these conditions on hair
cells by modifying miRNA expression. This is supported by the fact that ROS and pro-
inflammatory cytokines alter the expression of miRNAs in non-auditory neurons [48],
leading to their damaging effects. Additionally, several studies have demonstrated that
immune cells are present in the human inner ear and that activation of the systemic immune
system can contribute to cochlear degeneration, potentially resulting in permanent hearing
loss [49–51]. Inflammation in the cochlea may arise from macrophages within the inner
ear, either recruited from circulating monocytes originating in bone marrow or possibly
resident cells [52,53]. Consequently, this study concentrated on examining gene expression
alterations in peripheral blood leukocytes of ARHL patients, suggesting that these systemic
immune changes may be linked to ARHL.

The present study is constrained by a restricted number of clinical samples and relies
on in vitro experimental data. Consequently, future research employing animal models
is essential to validate and extend these findings. Additionally, potential age-related
effects, which were not entirely controlled in our experiments, should be considered when
interpreting the results. Nonetheless, this study holds substantial academic significance as
it utilizes human whole blood samples and human-derived materials. Notably, it identifies
a noteworthy inverse relationship between IFNG and miRNA 409-3p levels, highlighting
their potential roles in the pathogenesis of hearing loss. Moreover, the study provides
insights into the involvement of p16 in auditory dysfunction.

5. Conclusions

We suggest that the potential role of miR-409-3p regulates IFNG expression by the p16
signaling pathway in ARHL patients. These findings suggest that different developmental
approaches are necessary for preventive treatments or strategies to address age-related
hearing loss.
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