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Abstract

RNA interference (RNAi) was investigated with the aim of achieving gene silencing with diverse RNAi platforms that include
small interfering RNA (siRNA), short hairpin RNA (shRNA) and antisense oligonucleotides (ASO). Different versions of each
system were used to silence the expression of specific subunits of the heterotrimeric signal transducing G-proteins, G alpha
i2 and G beta 2, in the RAW 264.7 murine macrophage cell line. The specificity of the different RNA interference (RNAi)
platforms was assessed by DNA microarray analysis. Reliable RNAi methodologies against the genes of interest were then
developed and applied to functional studies of signaling networks. This study demonstrates a successful knockdown of
target genes and shows the potential of RNAi for use in functional studies of signaling molecules.
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Introduction

RNA interference (RNAi) has been widely used by animal cell

biologists as a gene silencing tool to study the cellular effects

generated by modulating the expression of individual genes

[1,2,3,4,5,6]. Expression can be reduced by introducing gene-

specific double-stranded RNA (dsRNA) or single-stranded RNA

(ssRNA) into a cell. Subsequently, the small RNA products

generated from Drosha and/or Dicer-mediated dsRNA processing

are delivered to the RNA-induced silencing complex (RISC),

which is implicated in mRNA destruction and translational

repression, and the RNA-induced transcriptional silencing com-

plex (RITS), which is implicated in chromatin silencing [7,8,9].

However, difficulties remain in finding the best way to make

RNAi work as a gene-specific silencing procedure for signaling

studies. For example, dsRNA [10] or ssRNA [11,12,13] can

stimulate innate cytokine responses in mammals. Additionally,

synthetic small interfering RNAs (siRNAs) formulated in nonviral

delivery vehicles can be potent inducers of interferons and

inflammatory cytokines in mice and humans [14]. siRNAs can

also mediate sequence-independent gene suppression and induce

immune activation by signaling through toll-like receptor 3

(TLR3) [15]. A recent study showed that dsRNAs that are 21

nucleotides or longer are also involved in anti-angiogenic

responses [16]. These could significantly limit the application of

RNAi and result in off-target effects and immuno-stimulation

associated with the nucleic acid treatments. In order to develop

reliable RNAi reagents, three different platforms were tested: small

interfering RNA (siRNA), antisense oligonucleotide (ASO) and

short hairpin RNA (shRNA). siRNA, ASO and shRNA were

designed to knockdown the endogenous G protein alpha i2 (Gai2)

or G protein beta 2 (Gb2) gene in screens in RAW 264.7 murine

macrophage-like cells. A series of gene expression profiling

experiments and quantitative reverse transcriptase-polymerase

chain reaction (QRT-PCR) analyses were carried out to assess

both the specificity of the target gene knockdown and the

functional studies of the targeted signaling molecules. Gai2

knockdown cells were tested to monitor the changes in signaling

networks after treatment with different ligands, in this case

lipopolysaccharide (LPS), Pam2CSK4 (Pam2) or prostaglandin E2

(PGE2).

Results

DNA Microarray and RT-PCR verification of expression of
specific genes in RAW 264.7 cells

To develop a clear picture of the nature of the genes expressed

in RAW 264.7 cells, Affymetrix GeneChip screening was

performed, producing duplicate array data sets. Affymetrix Mouse

430 chips A and B were used to assess the gene expression of RAW

264.7 cells, mouse bone marrow derived macrophage (BMDM)

cells and the mouse macrophage cell line, J774A.1. BMDM and

the cell lines have ‘Present Call’ gene elements ranging from 17K

to 19K (data available at The Signaling Gateway: http://www.

signaling-gateway.org/data/micro/cgi-bin/micro.cgi?expt = affy).

Table 1 shows that a gene marked ‘Present’ in the Affymetrix

GeneChip data was almost always determined to be ‘Present’

when measured using RT-PCR. To avoid any possible errors in

the design of PCR primer sets, genes showing an ‘Absent’ signal in

RT-PCR during the first trial were verified using 2 to 3 alternative
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primer sets. Overall, approximately 5% of the transcripts found to

be present in the microarray were absent according to RT-PCR,

and 30–40% of absent determinations according to the microarray

were detected by RT-PCR (Table S1). However, in cases in which

multiple probes existed on the chip (38% of the probes),

reproducible calls (P: Present or A: Absent) improve the odds of

a correct result. The presence of Gai2 and Gb2 mRNAs was

verified using a DNA microarray and by a RT-PCR analysis

(Table 1).

Establishment of cells lacking Gai2 and Gb2 proteins
G protein coupled receptors are characterized by seven

transmembrane domains, and ligands stimulating these receptors

are diverse and include immuno-stimulating molecules. Hetero-

trimeric G proteins are composed of a, b and c subunits, with the

G protein alpha subunits consisting of four families: Gai/o, Gas,

Gaq/11 and Ga12/13. The Gai family is further characterized

into Gai1, Gai2 and Gai3. Gai2 has been reported to inhibit the

activities of types I, V, and VI adenylyl cyclase isoforms directly

[17]. As Gai2 appears to be involved in a complex pattern of

signaling [17,18,19,20,21,22,23,24,25,26,27], insight into its

function was sought by silencing the Gai2 transcript. In addition,

the Gb2 subunits released upon activation of the heterotrimeric G

protein activate specific effectors, and previous studies have shown

it to be the primary beta subunit for certain Gai signaling

pathways in macrophage cells [5,6]. Thus, Gb2 was also targeted

to test the RNAi mechanisms.

RAW 264.7 cells were transfected with siRNA or ASO against

Gai2 or Gb2. Western blot results (Figures 1A and B) showed a

significant knockdown of the target gene in each of experiments.

RAW cells were transfected using FuGENE6 (Roche Molecular

Biochemicals, Indianapolis, IN) for ASO and Lipofectamine 2000

(Invitrogen, Carlsbad, CA) for siRNA. Cells were harvested at

72 hr post-transfection.

Pseudotyped lentivirus carrying shRNA can be efficiently

integrated into the chromosome, making it a good carrier for

the delivery and sustained expression of shRNA [5,28]. Lentiviral

vectors were constructed with expression cassettes that allowed the

expression of antibiotic selection markers (e.g., puromycin) in

order to identify and enrich the fraction of transduced cells

Table 1. Expression of heterotrimeric G protein subunits and RGS proteins in RAW 264.7 cells, as assessed by Affymetrix
GeneChips and RT-PCR (P: present, A: absent).

Symbol Gene Name Affymetrix Calls RT-PCR Results Abundance UMRR*

Gnai1 G alpha i1 subunit A A P

Gnai2 G alpha i2 subunit P P high

Gnai3 G alpha i3 subunit P P medium

Gna11 G alpha 11 subunit P P medium

Gna14 G alpha 14 subunit A,A A P

Gna15 G alpha 15/16 subunit A P high

Gnaq G alpha q subunit P P high

Gnb1 G beta 1 subunit P,A,P P high

Gnb2 G beta 2 subunit P P medium

Gnb3 G beta 3 subunit A A P

Gnb4 G beta 4 subunit P P medium

Gnb5 G beta 5 subunit A,P P high

Gng2 G gamma 2 subunit P,A,P P low

Gng3 G gamma 3 subunit A A P

Gng4 G gamma 4 subunit A,A,A A A

Gng5 G gamma 5 subunit P,P,A P medium

Gng7 G gamma 7 subunit A P low P

Gng8 G gamma 8 subunit A P medium

Gng10 G gamma 10 subunit P

Gng11 G gamma 11 subunit A P medium

Gng12 G gamma 12 subunit P

Gng13 G gamma 13 subunit A A P

Gng14 G gamma 14 subunit P

Rgs4 regulator of G protein signaling 4 A,A,A A P

Rgs7 regulator of G protein signaling 7 A A P

Rgs8 regulator of G protein signaling 8 P medium P

Rgs13 regulator of G protein signaling 13 A P low P

Rgs16 regulator of G protein signaling 16 A,A,A P high

Rgs19 regulator of G protein signaling 19 P,P P high P

*RT-PCR results in Universal Mouse Reference RNA (11 cell line mixture).
doi:10.1371/journal.pone.0004559.t001

Gene Silencing
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(Figure 1C). Cells were infected with a lentivirus containing a

previously validated Gai2 or Gb2 shRNA [5,6]. The target gene

silencing activity of each shRNA in RAW264.7 cells was assessed

by QRT-PCR and immunoblotting for endogenous proteins.

Consistent with the QRT-PCR data, significant decreases in the

levels of Gai2 or Gb2 proteins were observed in the shRNA

expressing cells (Figure 1).

siRNA, ASO and shRNA as RNAi tools
It was confirmed by DNA microarray analysis using custom-

made inkjet-printed 16K oligonucleotide chips (Gene Expression

Omnibus platform accession number GPL254: http://www.

ncbi.nlm.nih.gov/projects/geo/) that the transfection of siRNA

against Gai2 or Gb2 showed significant levels of the target gene

knockdown (Figure 2). Cells were harvested at 48 hr post-

transfection for assessment of mRNA, and gene expression was

assessed using a DNA microarray and by QRT-PCR. Control

samples were mock-treated with transfection reagent to deter-

mine the baseline levels of gene expression. It was found that

400 nM siRNA is invariably more effective than 100 nM or

200 nM. Although several papers have noted that siRNA

reaches maximal effectiveness at a concentration lower than

100 nM [29,30], Song et al. [31] reported that primary

macrophages required 1 mM siRNA to achieve a maximal

effect. For any given siRNA, a comparable level of knockdown

can be achieved with at least a 10-fold lower siRNA

concentration using NIH3T3 cells (data not shown). The present

results suggest that the requirement for a high siRNA

Figure 1. Western blot analysis of (A) Gai2 and (B) Gb2 proteins in shRNA, siRNA and ASO treated RAW 264.7 cells. Two independent
experiments are shown for the siRNA and ASO treatments. Blots from the shRNA-expressing lentiviral (LV) lines are representative of multiple samples
taken over a 5-week period. Significant target gene knockdown is observed with all three platforms. UGIP: control lentivirus transfected cell line, UT:
untreated, Mock: mock-treated. (C) Schematic diagram of the lentiviral construct used to generate shRNA expressing RAW 264.7 cell lines. The hairpin
form of siRNA is expressed under the control of a mouse H1RNA polymerase III promoter. The vector also contains the enhanced GFP marker gene
and the puromycin resistance gene (Puro) regulated by a UbiC promoter. IRES, internal ribosome entry site; FLAP, HIV-1 FLAP element; WRE,
woodchuck hepatitis post- transcriptional regulatory element.
doi:10.1371/journal.pone.0004559.g001

Gene Silencing
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concentration in RAW264.7 cells is simply a function of their

low transfection efficiency.

Validated ASOs against the Gai2 or Gb2 gene were obtained

from ISIS Pharmaceuticals, Inc. (Carlsbad, CA). The ASOs used

were phosphorothioate oligodeoxynucleotides with 29-O-methox-

yethyl incorporated to enhance their affinity for RNA sequences

and their resistance to degradation by nucleases. RAW 264.7 cells

were transfected with 400 nM of ASO and were harvested for

mRNA analysis at 48 hr post-transfection. Results from the DNA

microarrays showed a detectable knockdown for ASO against Gb2

message (Figure 2B) as well as a specific knockdown for ASO

targeting Gai2. Another set of Gai2 ASO data was not included in

the analysis shown in Figure 2A due to the unexpected induction

of TLR-related genes. This will be discussed later.

It has been shown that the knockdown effect mediated by

siRNA or ASO is sustained for up to several days [29,32,33].

However, creation of a cell line infected with a shRNA-expressing

lentivirus provides an approach for gene knockdown over a longer

term. The analysis in Figure 2 shows that lentiviral vector-based

RNAi works well in RAW 264.7 cells with a robust knockdown of

the Gai2 and Gb2 target genes.

Induction of TLR-related genes by ASO designed for a
knockdown of Gai2

The ASO tests showed an unexpected observation of a

significant degree of induction of TLR-related genes by one of

ASOs designed for the knockdown of the Gai2 gene. Kim et al.

[34] found a very potent induction of interferon a and b by short

single-stranded RNAs (ssRNAs) transcribed with T3, T7 and

Sp6 RNA polymerases. In their studies, analyses of the potential

mediators of this response revealed that the initiating 59

triphosphate is required for interferon induction. Moreover,

single-strand RNA bearing 59 phosphate could activate RIG-1

mediated anti-viral responses [35] and it was also shown that 59

triphosphate is the ligand for RIG-1 [36]. However, with the

present ASO, neither RNA polymerase nor 59 triphosphate was

used. Nonetheless, a transcription profiling analysis revealed

patterns of regulation that were very similar to the patterns of

expression induced by ligands that trigger TLRs and clustered

with them (Figure 3), showing a higher expression of IL1b,

IFNa-inducible protein, chemokine (C-C motif) ligand 2 (Ccl2),

IFN-induced protein with tetratricopeptide repeats 1 (Ifit1), 2

(Ifit2) and 3 (Ifit3), granulocyte colony stimulating factor 3 (Csf3),

immunoresponsive gene 1 (Irg1), IL6, guanylate nucleotide

binding protein 1 (Gbp1), 2 (Gbp2) and 4 (Gbp4), dual specificity

phosphatase 1 (Dusp1) and 2 (Dusp2), IL10, and growth arrest

and DNA-damage-inducible 45a (Gadd45a) (not all data shown:

separate paper in preparation). When the ASO sequence for

Gai2 was studied further, it was found that the Gai2 antisense

oligonucleotide sequence has several CpG motifs (59-TTT AGA

GCG CTC GGC TGC CG-39: multiple unmethylated CpG
appeared and one purine-purine-CpG-pyrimidine-pyrimidine

existed). Unmethylated CpG motifs are present in bacterial

genomic DNA and function as a pattern recognition motif by the

host innate immune system [37,38]. For mouse, the sequence

GACGTT appears to be optimal, but flanking nucleotides to the

Figure 2. Hierarchically clustered dendrograms of gene expression changes. Clustering was achieved using the CLUSTER and TREEVIEW
programs (http://rana.lbl.gov/EisenSoftware.htm). Each row represents a gene, and each column represents a particular sample. (A) Gai2 gene
knockdown (LV40 and LV11: shRNA- expressing lentivirus transfected cell lines; I and L: I or L form of siRNA transfected into cells). (B) Gb2 gene
knockdown (LV4 and LV43: shRNA-expressing lentivirus transfected cell lines; G and H: G or H form of siRNA transfected into cells; Gb2-ASO: antisense
oligonucleotide). The expression level relative to that of the control cells is provided by colors shown in log2 scale. The target genes, Gai2 and Gb2,
are highlighted by arrows. The apparent down-regulation of IL13ra2 in the Gai2-deficient cells and IL1rn in the Gb2-deficient cells are also highlighted
(see context).
doi:10.1371/journal.pone.0004559.g002

Gene Silencing
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central CpG core appear to influence recognition to some

degree. Oligonucleotides containing the core CpG motif might

bind to the TLR9 whose expression was confirmed in RAW

264.7 cells (Table 2). TLR9 engagement triggers alteration of the

cellular redox balance, tyrosine phosphorylation of vav1 by a src-

related tyrosine kinase [39], and the induction of cell signaling

pathways including mitogen-activated protein kinases (MAPKs)

and NFkB [37]. Interleukin-1 receptor-associated kinase (IRAK)

and/or tumor-necrosis-factor-receptor-associated factor 6

(TRAF6) may be diverging points for NFkB activation in

response to CpG DNA in RAW264.7 cells [40,41]. In our ASO

sequence against Gai2, three copies of the unmethylated CpG

motif per oligonucleotide led to the enhanced activation of

TLRs.

Figure 3. Hierarchical clustering of gene expression for different RNAi platforms or ligand treatments in Gai2 knockdown RAW
264.7 cells. While Pam2 0.5 h (1st) and Pam2 0.5 h (2nd) were tested in lentivirus vector transfected RAW cell lines, Pam2 0.5 h was carried out in
wild type RAW 264.7 cells together with other TLR ligand experiments, in this case Pam3 , Zymosan, Taxol, PolyIC and CpG.
doi:10.1371/journal.pone.0004559.g003

Gene Silencing
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The effects of Gai2 or Gb2 knockdown
Gene expression analyses were performed for all of the

transduced cells using custom-made 16K oligonucleotide DNA

microarrays. It is well known that the individual members of the G

protein heterotrimers are necessary for the stability of their

binding partners [5,42]. While the regulated number of genes in

each knockdown experiment in which a two-fold cut-off was used

was between about 30 to 80, changes in the mRNA expression

levels of other a, b or c G proteins were not detected in siRNA- or

ASO-treated cells or in shRNA-containing cells (Table S2),

indicating that the absence of the Gai2 or Gb2 subunit protein

did not affect the levels of transcripts encoding other individual

members of the G protein heterotrimers.

In addition to the knockdown of the intended target, apparent

regulation of other genes depending on the RNAi platforms was

found (Figure 2). As shown in Figure 2, there appeared to be up-

or down-regulations of some genes in both Gai2- and Gb2-

deficient cell lines. The apparent down-regulation of interleukin 13

receptor alpha2 (IL13ra2) in the Gai2-deficient cells and

interleukin 1 receptor antagonist (IL1rn) in the Gb2-deficient cells

may be noteworthy, as these changes were observed with all

platforms (Figure 2). This result is intriguing given the fact that

these proteins are not reported as being capable of coupling to

either Gai2 or Gb2. A biological link was not found for Gai2 or

Gb2 to IL13ra2 or IL1rn in published reports; however, it was

noted that the selected oligonucleotide sequences used for Gai2 or

Gb2 RNAi tests had homology of 7 to 8 contiguous nucleotides to

either IL13ra2 (siRNA structure I) or IL1rn (siRNA structure G

and ASO) (Figures 4A and B). While the direct silencing of

nontargeted genes containing as few as eleven contiguous

nucleotides of identity to the siRNA has been reported [43], it

appears to be unlikely that 7 to 8 contiguous nucleotides of identity

can regulate the expression of unintended targets. Furthermore,

given the fact that not all of the siRNA, shRNA or ASO sequences

showed significant homology to the IL13ra2 or IL1rn sequences

(Figure 4), these common down-regulations may be due to an

unappreciated biological consequence of Gai2 or Gb2 depletion

and shed light onto the unidentified functions of these G-protein

subunits. Interestingly, the expression of RGS16 (Regulators of G

protein Signaling 16) was also downregulated in many of the tests

for either Gai2 or Gb2 (Figure 2). While RGS17 has been

reported to act as a GTPase-activating protein (GAP) on free Gai2

and Gao under pre-steady-state conditions [44], it remains to be

determined if the depletion of RGS16 in the Gai2 and Gb2

knockdown cells is biologically relevant.

RNAi-based perturbations
The present studies were extended to reveal which signaling

networks are associated with the reduction of the Gai2 protein in

the presence of lipopolysaccharide (LPS), Pam2CSK4 (Pam2) or

prostaglandin E2 (PGE2). To observe the effect of the absence of

Gai2 in a ligand-dependent manner, gene expression was

examined in both control RAW 264.7 cells (control lentiviral

vector transfected cell lines) and Gai2-deficient cells (Gai2

shRNA-harboring lentiviral cell lines) after stimulation with LPS

(100 ng/ml LPS and 100 pM LPS-binding peptide), Pam2

(350 nM) or PGE2 (10 mM) using 16K oligonucleotide micro-

arrays. According to the criterion of a $2 fold change in

expression, exposure of the cells to LPS for 30 min resulted in the

up-regulation of nearly 100 transcripts in both control and Gai2

knockdown cells in a similar pattern. A partial image of the set of

clustered dendrograms is shown in Figure 3. Pam2 or PGE2

treatment of both cells also led to a very similar pattern of gene

expression. However, there were some subtle differences in the

changes in transcript levels induced by LPS or Pam2 treatment in

the cells lacking the Gai2 protein (Table 3). These genes include

early growth response 2 (Egr2), the nuclear factor of kappa light

polypeptide gene enhancer in B-cells inhibitor, zeta (Nfkbiz),

tumor necrosis factor (TNF) and the 1810011O10 RIKEN clone,

whose expressions were enhanced by LPS or Pam2 in Gai2-

deficient cells.

LPS is the major constituent of the outer membrane of Gram-

negative bacteria. LPS binds to the cell surface receptor CD14,

which enhances TLR4-dependent LPS recognition [45,46,47].

TLR4 activation engages a set of MyD88 (myeloid differentiation

primary-response protein 88) adaptor family members, including

MyD88, TIRAP (TIR domain containing adaptor protein), TRIF

(TIR domain containing adaptor protein inducing IFNb), and

TRAM (TRIF related adaptor molecule). Pam2 is a synthetic

diacylated lipopeptide, and these lipid-modified proteins are

present in the cell membranes of bacterial cell walls. The

intracytoplasmic signaling events associated with Pam2 stimulation

are mainly engaged in TLR2/6 activation, which also leads to

stimulation of the MyD88-dependent pathway [48]. Therefore,

the synergistic effects of Gai2 knockdown on LPS– or Pam2–

induced Egr2, Nfkbiz or TNF (as shown in Table 3) suggest that

some aspect of these signaling pathways is influenced by Gai2

levels. This may reflect a heightened response or defective negative

regulation in Gai2-deficient cells. Consistent with the present

results, stimulation of Gai2-deficient peripheral T cells induced a

hyper-responsive profile of interleukin-2, tumor necrosis factor,

and interferon-gamma production [18]. Unlike Gai1 or Gai3,

cells deficient in Gai2 were reported to be hyper-responsive to

cytokines, including IFN-gamma and IL-4 production following

activation [20].

Discussion

It is well established that siRNA efficacy is determined by how

effectively the siRNA is incorporated into RISC [49,50,51]. This

necessitates the testing of several candidate siRNAs to identify an

effective reagent. Recently, it has been shown that testing of many

siRNAs can be circumvented by in vitro digestion of a long dsRNA

Table 2. RT-PCR confirmation of TLR expression in RAW 264.7
cells (P: present, A: absent).

Gene Name
RT-PCR Results
in RAW Abundance

Affymetrix
Chip Call

TLR1 P High P

TLR2 P High P

TLR3 P High P

TLR4 P Low P

TLR5 A A

TLR6 P Medium P

TLR7 P High P

TLR8 A A

TLR9 P High A

TLR10 (not in mouse)

TLR11 A

TLR12 P Medium

TLR13 P High

doi:10.1371/journal.pone.0004559.t002

Gene Silencing
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using the dicer enzyme. This produces a population of siRNAs

covering a much larger region of target sequence and usually obviates

the need to test multiple sequences for each gene. The caveats,

however, are that this approach theoretically increases the possibility

of an undesirable knockdown of other genes with significant

homology to the target sequences used as the dicer template, and

siRNAs derived from synthesized long dsRNAs by the T7 RNA

polymerase system can trigger a potent induction of interferon a and

b in a variety of cell lines due to the initiating 59 triphosphate [34].

Three different silencing/delivery systems (siRNA, ASO and

shRNA) and different sequences in the target genes in each case

were used to assess how the knockdown of a particular gene may

Figure 4. Sequence homologies of the oligonucleotides used in siRNA, shRNA or ASO for (A) Gai2 or (B) Gb2. Sequences were analyzed
by OMIGA 2.0 (Rainbow Technologies, Inc.).
doi:10.1371/journal.pone.0004559.g004

Gene Silencing
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affect molecular mechanisms. The significant knockdown in the

Gai2 and Gb2 protein levels suggests that the knockdown levels

achievable with siRNA, ASO or shRNA may be sufficient to assess

a transient or permanent phenotype [29].

‘Off-target effects’ can occur if the sequence identity between

the siRNA and random mRNA transcripts is high enough to cause

RNAi to knockdown the expression of non-targeted genes.

However, in our experiments, sequence-specific off-target effects

were not obvious except for the ASO designed for Gai2, which

indicates that the design of oligonucleotides is certainly important

and should be tested in the genomic scale before it is used to

knockdown a target gene in biological studies. Kim et al. [29] and

Siolas et al. [52] found that synthetic RNA duplexes ,27

nucleotides in length can be up to 100 times more potent than

traditional 21-unit siRNA oligomers. Enhancing the potency of

RNAi duplexes and thus lowering the effective concentration of

that molecule is another preferable working direction to minimize

off-target effects. The enhanced potency of the ,27 nucleotide

siRNA is attributed to the fact that it is diced by the dicer and

directly delivered to the RNA-induced silencing complex (RISC).

Extracellular stimulants induce various cellular responses by

regulating diverse pathways, and perturbation of any genes in the

pathway can generate altered regulation of signaling networks. In

a mouse model, in vitro stimulation of splenocytes with formalin-

killed Staphylococcus aureus resulted in significantly increased

production of IL1b, TNF, and IL12p40 in Gai2 (2/2) compared

to control mice [26]. Mice with targeted deletion of Gai2 develop

an inflammatory bowel disease closely resembling ulcerative

colitis, and the IFNc and IL1b levels were increased in the

inflamed colons [53]. In RAW 264.7 cells, the expression level of

Gai2 was relatively high compared to that of Gai3, whereas Gai1

was not expressed (Table 1). Gai2 proteins may play a role in

modulating LPS-activated signaling through TLR4, leading to

inflammatory mediator production in RAW 264.7 cells. There was

a significant increase in the LPS-induced production of TNFa in

Gai2-deficient RAW 264.7 cells compared with control cells

(Table 3). Subsequent QRT-PCR studies also confirmed that

TNFa levels following a LPS challenge were significantly greater

in Gai2-deficient cells. This is consistent with the published data

from Gai2 (2/2) mice [26,54].

Taken together, success was obtained with the knockdown of

target genes in RAW 264.7 cells using chemically synthesized

siRNA, lentiviral shRNA and ASO. The specificity of the different

platforms of RNAi was also assessed through DNA microarrays,

and the findings showed the successful development of siRNA

reagents against the genes of interest and the useful application of

vector-based RNAi to RAW 264.7 cells for functional studies.

Well-designed RNAi would be a very useful tool to knockdown

specific target genes and to study the functional roles of molecules

within the relevant signaling network system.

Materials and Methods

Nucleic acid sequences for shRNAs, siRNAs and ASOs
The shRNAs, siRNAs and ASOs used in these studies were

based on the following sequences: shRNAs (Gai2-LV40: 59-GTC

TAC AGC AAC ACC ATC C-39, Gai2-LV11: 59-GCA CAG

AGT GAC TAC ATC C-39, Gb2-LV43 & 4: 59-CAT CTG CTC

CAT CTA TAG TC-39), siRNAs (Gai2-I: 59-GAG CAA GTT

TGA GGA TCT A-39, Gai2-L: 59-CCG CTT ACT ACC TGA

ATG A-39, Gb2-G: 59-GGA CGG AAA GCT CAT CAT T-39,

Gb2-H: 59-GGA CGA CAA CCA AAT CAT C-39) and ASOs

(Gai2: 59-TTT AGA GCG CTC GGC TGC CG-39, Gb2: 59-

ATG AGC TTT CCG TCC TGG GA-39).

siRNAs or ASO treatments
All ASOs in this study were synthesized by ISIS Pharmaceu-

ticals, and all siRNAs were synthesized and HPLC-purified by

Qiagen Inc. (Valencia, CA). Briefly, RAW 264.7 cells in 24-well

dishes were transfected with 400 nM of either ASO or siRNA

using either FuGENE6 (Roche Molecular Biochemicals, Indiana-

polis, IN) or Lipofectamine 2000 (Invitrogen, Carlsbad, CA),

respectively. For siRNA transfection, an incubation volume of

200 ml was used for 4 hr followed by the addition of media up to

1 ml. For ASO transfection, an incubation volume of 500 ml was

used. siRNA transfections were repeated 24 hr after the initial

transfection while a single transfection was done for ASO

treatments. Cells were harvested at 48 hr post-transfection for

isolation of the RNA or at 72 hr post-transfection for isolation of

the protein.

Virus construction
Lentiviral vectors were constructed and used for virus

generation as described previously [5,6]. Annealed shRNA linkers

were ligated into a BamH1/Xho1-digested pEN_mH1c plasmid.

The cassette containing the mH1 promoter and the shRNA was

subcloned to a lentiviral expression vector by site-specific

recombination using the Gateway system (Invitrogen). The

Table 3. Ligand-induced gene expression changes in Gai2-deficient cells.

Gene Assay
W vs
Gi2-sh

LPS
0.5 h

Gi2: LPS
0.5 h F: LPS

Pam2
0.5 h

Gi2: Pam2
0.5 h F: Pam2

PGE
0.5 h

Gi2: PGE
0.5 h F: PGE

Nfkbiz Microarray 1.03 24.94 30.70 5.76 27.80 30.05 2.25 1.41 1.34 20.07

QRT-PCR 72.78 123.26 50.48 86.74 131.52 44.79 1.48 1.34 20.14

Egr2 Microarray 0.60 12.11 18.10 5.99 14.80 20.74 5.94 0.71 0.78 0.14

QRT-PCR 21.17 25.23 4.06 16.86 45.33 28.47 0.76 0.52 20.62

1810011O10Rik Microarray 1.01 4.81 10.16 5.35 4.00 8.63 4.63 1.42 1.34 20.09

QRT-PCR 53.51 84.18 30.67 71.06 116.53 45.47 3.45 2.32 21.13

Tnf Microarray 0.92 7.99 13.17 5.18 7.93 18.22 10.29 0.69 0.66 20.06

QRT-PCR 15.44 23.70 8.26 15.86 20.93 5.07 0.92 0.55 20.73

Note: The numbers are in fold differences. F (F factor) was calculated by (ligand effect in knockdown) – (ligand effect in wild type): Ligand effect = 2X21, if X$0 or
= 121/2X, if X,0.
Where, X is the log2 ratio.
doi:10.1371/journal.pone.0004559.t003
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lentiviral vector contains the GFP gene driven by the ubiquitin

promoter followed by an IRES (internal ribosome entry site)

sequence and an antibiotic resistance gene for the selection of

infected cells. The resultant lentiviral vectors were transfected into

293T cells two other plasmids referred to as ‘packaging’ and

‘envelope’ plasmids: pCMVDR8.91 (expresses HIV gag, pol and rev

genes), and pMD.G (expresses vesicular stomatitis virus G

envelope protein), respectively. The packaging and envelope

plasmids were a gift from the Didier Trono Lab, Geneva,

Switzerland [55]. At 48 hr post-transfection, culture supernatants

were collected and concentrated using Centricon Plus-80 units

according to the manufacturer’s instructions (Millipore Corporate,

Billerica, MA). Virus was titrated by infecting 293T cells and

assessing the percent of GFP positive cells using cytometric

analysis 48 hr post-infection. The titered virus was used to infect

RAW 264.7 cells at a MOI (multiplicity of infection) of five 293T-

transducing units per RAW 264.7 cell, at virus concentrations of 1

to 56107/ml. These infection conditions routinely resulted in an

average of 20% transduction efficiency, suggesting that a single

productive viral integration occurs for every 25 viruses used on

RAW 264.7 cells. Infected cells were selected according to their

antibiotic resistance. These infection conditions routinely resulted

in 10–25% transduction efficiency, suggesting that approximately

one productive viral integration occurs for every 5 viruses used on

RAW 264.7 cells. Infected cells were selected according to their

antibiotic resistance.

Western blotting
Cells were lysed with lysis buffer containing 150 mM NaCl,

50 mM NaF, 20 mM Tris, pH 7.5, 1% Triton X-100, 0.5%

sodium deoxycholate, 0.1% SDS, and protease inhibitor mixture

(Roche Diagnostics).

Thirty mg of protein was run on a NuPAGE 4–12% Bis-Tris gel

(Invitrogen). Total protein was transferred to a nitrocellulose

membrane (Schleicher and Schuell BioScience, Inc., Keene, NH)

and was subsequently immunoblotted for the protein of interest.

The membrane was blocked overnight at 4uC, which was followed

by incubation with protein specific primary antibody for 2 to 3 hr

at room temperature. After incubation with a secondary antibody

conjugated to HRP (horseradish peroxidase) (Amersham Biosci-

ences, Piscataway, NJ) for 1 hr at room temperature, the

membrane was developed using a SuperSignal West Pico

Chemiluminescent Substrate (Pierce Biotechnology, Inc., Rock-

ford, IL) and exposed to X-OMAT film (Kodak).

DNA microarray
Cells were cultured in media containing 0.5% FBS (for PGE2,

S1P and nicotinic acid) or 10% FBS (for LPS, Pam2, Pam3, CpG,

zymosan and polyIC) for 18 hr; stimulated with an agonist for

30 min, 2 hr or 4 hr; and were then harvested with Trizol

(Invitrogen, Carlsbad, CA). Cells for the basic RNAi tool tests of

siRNA, shRNA or ASO were cultured in media containing 10%

FBS and were harvested with Trizol. Three micrograms of total

RNAs from the cells were used as the starting material for the

microarray analysis.

The 16K mouse oligonucleotide arrays were fabricated using an

inkjet-printing method by Agilent Technologies (Palo Alto, CA).

These oligo arrays includes 13,536 probes of 70mers (Operon

Technologies Inc., Alameda, CA) and 2,304 probes of 65mers

(Sigma-Genosys, The Woodlands, TX). The platform description

(platform accession number GPL254) is available at GEO (Gene

Expression Omnibus: http://www.ncbi.nlm.nih.gov/projects/

geo/). The aminoallyl method was utilized for the preparation of

the fluorescently labeled target samples.

Quantitative RT-PCR
Quantitative real-time RT-PCR was performed using iCycler

(Bio-Rad Laboratories, Inc., Hercules, CA) following the manu-

facturer’s protocol. The measurement was normalized to a b actin

RNA control. The primers of genes are as follows: Nfkbiz, F 59-

CGA TGG ACC GGT TTG CA-39, R 59-GTA GGC GTT

TGC GGT GAT G-39; Egr-2, F 59-GTG CCA GCT GCT ATC

CAG AAG, R 59-GGC TGT GGT TGA AGC TGG AG-39;

TNF, F 59-CCC TCA CAC TCA GAT CAT CTT CT-39, R 59-

GCT ACG ACG TGG GCT ACA G-39; b-actin, F 59-CTT TGC

AGC TCC TTC GTT GC-39, R 59-ACG ATG GAG GGG AAT

ACA GC-39. The remaining primer sequences are available upon

request.

Supporting Information

Table S1 Expression of selected signaling genes in RAW 264.7

cells, as assessed by Affymetrix GeneChips and RT-PCR. There

were multiple probe sets in some cases. U: unavailable, P: present,

A: absent, M: marginal.

Found at: doi:10.1371/journal.pone.0004559.s001 (0.04 MB

XLS)

Table S2 mRNA expression levels (log2 ratio) of G protein

subunits assessed by DNA microarrays in shRNA, siRNA and

ASO-treated RAW 264.7 cells.

Found at: doi:10.1371/journal.pone.0004559.s002 (0.05 MB

XLS)
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