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Fig. 2. Alkyltransferase activity in retrovirally infected cell lines. Individual
CCL-1 (A4) and NIH-3T3 (B) clones were assayed for alkyltransferase activity as
described in “Materials and Methods.” Values shown represent the mean of 2 to
6 determinations per clone. The clone is identified by the exogenous promoter
controlling ada expression in the retrovirus used: RSV, vLJRSVada; TK,
vLITKada; and PGK, TKneoPGKada; or the LTR in the case of vLJBada.
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Fig. 3. Proviral integration into y-2, NIH-3T3, and CCL-1 cells. Plasmids
containing each of the proviral constructs were separately transfected into ¥-2
cells, and culture supernatant containing retroviral particles was used to infect
both NIH-3T3 and CCL-1 cells. Following selection for approximately 4 wk in
0.5 mg/ml of G418, resultant colonies of NIH-3T3 and CCL-1 cells were isolated
and expanded. Genomic DNA was extracted, digested with the restriction enzyme
Xbal, separated by agarose gel electrophoresis, transferred to a nylon membrane,
and analyzed for proviral sequences by hybridization to 1.3-kilobase ada probe.
Complementary sequences were identified using the 1.3-kilobase neo probe on
the same membrane (data not shown). pl, plasmid DNA containing the retrovirus;
¥2, ¢-2 cells transfected with the appropriate plasmid; N/H or CCL1, NIH-3T3
or CCL-1 cells infected with the designated virus. The expected fragments
hybridizing with ada are: vLJBada, 5.2 kilobases; vLJRSVada, 1.8 kilobases;
vLJTKada, 2.0 kilobases; and vTKneoPGKada, 4.9 kilobases.

CCL-1 clones with increased alkyltransferase activity contained
only the expected proviral restriction fragment, although some
virus-producing y-2 clones had additional bands consistent with
either internal deletions, insertions, or point mutations at the
Xbal site within the provirus. Dot blot analysis of each retro-
virally infected NIH-3T3 or CCL-1 clone indicated the presence
of 0.5 to 1 gene copy per cell (data not shown).

Analysis of mRNA Transcripts in Retrovirally Infected NIH-
3T3 and CCL-1 Cells. ada expression in individual cloned cell
lines infected with each retroviral construct was analyzed by
Northern blot (Fig. 4). ada transcripts were expressed in each
cell line with the appropriately sized mRNA transcripts gener-
ated from both the internal promoter, as well as from the 5’
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Fig. 4. Expression of ada in retrovirally infected cell lines. Total cellular RNA
was prepared from representative clones of each cell line infected with each of
the 4 retroviruses followed by formaldehyde-agarose electrophoresis, transfer to
a nylon membrane, and hybridization with ada probe. The same membrane was
then stripped and rehybridized with actin probe to control for variation in RNA
loading. LTR on the right indicates the expected size of the full-length genomic
transcripts initiating in the 5' LTR. The transcript lengths predicted to hybridize
with ada from each provirus are as follows: vLIJBada (LTR), 5.7 kilobases;
vLJRSVada (RS¥), 6.1 and 2.1 kilobases; TKneoPGKada (PGK), 6.1 and 2.5
kilobases; and vLIJTKada (TK), 5.8 and 2.3 kilobases.

LTR. There was variation in the relative intensity of the signals
from the LTR and internal promoters when the same retroviral
construct was used to infect the two cells lines. Specifically, the
amount of RNA containing ada was greater in NIH-3T3 cell
clones than CCL-1 clones for each virus measured, an obser-
vation that was consistently seen with multiple RNA analyses.
ada mRNA initiating in the 5 LTR was greatest in cells
infected with vLJRSVada and vLJTKada, less with vLJBada,
and lowest with vTKneoPGKada. In NIH-3T3 clones, relative
promoter strength was RSV > PGK = TK; and in CCL-1
clones, the order was RSV > PGK > TK. In CCL-1 clones, the
ada mRNA initiating from the internal promoters was greater
than that initiating from the 5’ LTR. It is interesting to note
the lack of correlation between ada mRNA levels and alkyl-
transferase activity in the NIH-3T3 cell line infected with
VLJTKada, whereas there is a reasonably good correlation
between ada mRNA and alkyltransferase in the other infected
clones.

Determination of E. coli Origin of Alkyltransferase in Retro-
virally Infected Cell Lines by SDS-PAGE. To confirm that the
increase in alkyltransferase was due to ada gene expression,
SDS-PAGE of the cell extracts was performed after reacting
the extracts with [°’H]methylnitrosourea to label the alkyltrans-
ferase (Fig. 5). Each infected clone of NIH-3T3 and CCL-1 had
evidence of the bacterial M, 39,000 protein. Occasionally the
active M, 19,000 and 21,000 proteolytic breakdown products
of the bacterial protein were observed. In retrovirally infected
NIH-3T3 clones, the intensity of the endogenous mammalian
protein band (M, 26,000) is similar to the NIH-3T3 parent cell
line. This mammalian band is faintly seen in CCL-1 cells and
clones.

Nitrosourea Resistance in Cell Lines Expressing the ada Gene.
Virally infected CCL-1 clones were more resistant to BCNU
(Fig. 6) and CNU (Fig. 7) than was the parent CCL-1 cell line.
The relative drug resistance corresponded to the level of alkyl-
transferase activity, with the CCL-1 clone carrying vLJRSVada
(CCL1-RSYV) being the most resistant. The nitrosourea resist-
ance could be reversed by the specific alkyltransferase inhibitor,
Of-methylguanine, in CCL1-RSV cells (Fig. 7). In contrast,
clones derived from the NIH-3T3 parent cell line, which is
normally much more resistant to BCNU than the CCL-1 parent
cell line, were only marginally more resistant to CNU- or
BCNU-induced cytotoxicity despite the fact that some virally
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Fig. 6. BCNU cytotoxicity in CCL-1 clones containing ada. CCL-1 cells or
individual retrovirally infected CCL-1 clones were exposed to increasing concen-
trations of BCNU in serum-free medium for 2 h and cultured in fresh medium
for 10 days, after which colonies containing greater than 50 cells were counted.
The individual cell lines and selected single clones of retrovirally infected cell
lines used in these experiments and their mean alkyltransferase activity are as
follows: O, CCL-1, 35 units/mg of protein; A, CCL1-RSV (infected with
vLJRSVada), 1219 units/mg of protein, @, CCL1-PGK (infected with
vTKneoPGKada), 564 units/mg of protein; ®, CCL1-TK (infected with
vLIJTKada), 223 units/mg of protein; and 0O, CCL1-LTR (infected with
vLIBada), 138 units/mg of protein. Points, mean of 5 separate experiments; bars,
SE.

infected NIH-3T3 clones contained alkyltransferase activity 2
to 15 times the level found in the parent cell line. In these
clones, the 50% inhibitory concentrations in clonogenic assays
were 32 uM BCNU and 112 um CNU for NIH-3T3 cells infected
with vVLJRSVada (NIH-3T3-RSV) and 28 um BCNU and 86
uM CNU for NIH-3T3 cells. Even though increased alkyltrans-
ferase activity did not increase BCNU resistance in the NIH-
3T3 clones, O°-methylguanine did deplete the alkyltransferase
and sensitize these cells to nitrosoureas (data not shown),
indicating that drug resistance was at least partly dependent on
alkyltransferase activity.

Intracellular Localization of Bacterial ada Protein. A possible
explanation for the lack of increased BCNU resistance in NIH-
3T3 clones expressing high levels of ada is that the bacterial
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Fig. 7. Effect of O°-methylguanine on CNU cytotoxicity. CCL-1 or CCL1-
RSV cells were incubated with or without 0.5 mM O%-methylguanine for 18 h,
trypsinized, and replated at 1000 cells/dish and then exposed to increasing
concentrations of CNU for 2 h. Cells were then cultured for 10 days in fresh
medium and colonies counted. Similar results were obtained with the other
retrovirally infected cell lines. Clonal survival was not affected by exposure to O%-
methylguanine. 0, CCL1-RSV; B, CCL1-RSV plus O°-methylguanine; O, CCL-
1; @, CCL-1 plus O*-methylguanine.

160 200

alkyltransferase is not efficiently transported into the nucleus
and, thus, cannot repair DNA damage. This possibility is not
examined by measuring total cellular alkyltransferase but can
be addressed by using an immunohistochemical technique to
assess the intracellular localization of the bacterial ada protein.
Fig. 8 shows predominantly diffuse cytoplasmic staining of the
bacterial alkyltransferase in NIH-3T3 clones expressing ada
from vLIJRSVada. Nuclear staining was seen in a minority of
cells, usually only in cell clusters. NIH-3T3 clones infected with
the three other retroviruses also had a similar diffuse cyto-
plasmic staining pattern with irregular or weak nuclear staining.
CCL-1 clones expressing ada, on the other hand (Fig. 84), had
relatively increased staining of the nucleus relative to the cyto-
plasm, but even these cell lines failed to show predominant
nuclear localization of the protein.

6048

Downloaded from cancerres.aacrjournals.org on August 17, 2011
Copyright © 1989 American Association for Cancer Research


http://cancerres.aacrjournals.org/
http://www.aacr.org/

RETROVIRALLY MEDIATED GENE TRANSFER OF ada

Fig. 8. Intracellular location of bacterial al-
kyltransferase. Cells were grown to late log
phase on glass slides, incubated with rabbit
antibacterial alkyltransferase polyclonal anti-
bodies, and identified by secondary reaction
with swine anti-rabbit antibody conjugated to
immunoperoxidase. Multiple preparations
showed a similar pattern of diffuse cytoplasmic
staining with irregular and inconsistent nu-
clear staining, particularly in NIH-3T3-RSV.
Similar exposure settings were used in 4, B,
and C. Photograph D was overexposed so that
the staining cells can be better seen. Irregular
but weak background staining was noted in
CCL-1 cells. 4, NIH-3T3; B, NIH-3T3RSV;
C, CCL-1; and D, CCL1-RSV. Similar pat-
terns were observed with cell lines infected
with each of the other three retroviruses.

DISCUSSION

In these studies, a series of replication-defective retroviral
vectors was constructed containing a heterologous mammalian
promoter linked to the bacterial ada gene. Each of the 4
retroviruses successfully infected the NIH-3T3 and CCL-1 cell
lines, and the ada gene was expressed in each instance. Impor-
tant differences in ada gene expression were noted between
retroviral constructs and between cell lines. Expression of the
RSVada chimeric gene was greater than the other genes and,
in general, ada expression in NIH-3T3 was greater than in
CCL-1 cells. Bacterial alkyltransferase activity in CCL-1 im-
parted resistance to chloroethylnitrosoureas, whereas little ef-
fect was noted in NIH-3T3 cells containing ada. These studies
indicate that VLIRS Vada and vTKneoPGKada may be effective
retroviral vectors with which to study ada gene expression in
normal mammalian cells and tissues in vivo, particularly in cells
and tissues which, like CCL-1, have low levels of endogenous
alkyltransferase activity.

There are a number of explanations for why different retro-
viral vectors had such a range in ada expression in the cell lines
tested. (a) In vLIBada, ada expression from the 5’ LTR is
relatively low. In the parent pLJ vector, the internal SV-40
promoter, which controls neo expression, decreases expression
from the 5’ LTR (34). It is possible that absence of the SV-40
promoter in vLJTKada and vLJRSVada was responsible for
the increased transcription from the 5’ LTR in NIH-3T3 and,
to a lesser extent, in CCL-1 cells. (5) In vTKneoPGKada the
transcriptional orientation of the neo gene may have decreased
virus production and possibly ada expression, because cells
which transcribe from the 5’ LTR might be lost during contin-
ued selection in G418, since the 5 LTR mRNA contains
antisense neo mRNA which would hybridize with the sense neo
mRNA, resulting in less neo mRNA and lack of G418 resist-
ance. This vector was designed such that expression from the
5’ LTR would be limited once proviral integration into the
targeted cell had been achieved so as to avoid the negative
interaction between the LTR enhancer elements and the inter-
nal promoters (48). We are currently evaluating whether clones
infected with this virus develop deletions of the 5’ LTR during

continued selection. Inactivation of the 5° LTR could explain
why viral production in the y-2 vTKneoPGKada clones de-
creased over time and why small proviral deletions were noted
in some clones. (¢) Proximity between internal chimeric genes
can lead to promoter competition for transcription factors (48)
and could have been important in vITKneoPKGada. (d) Finally,
we are currently analyzing whether or not the vLJTKada virus
contains an internal mutation to explain the discordance be-
tween the level of ada mRNA and alkyltransferase activity in
the NIH-3T3 cell line.

Whether or not our results will predict expression of ada
when these viruses are used to infect normal cell explants or
tissues in vivo is unknown. However, it is known that, in
transgenic animals, methylation of the retroviral 5’ LTR de-
creases transcription, whereas tissue-specific expression of reg-
ulated internal promoters is maintained (22, 49). In bone mar-
row cells, the RSV, TK, and PGK promoters are expressed to
a greater extent than the SV-40 or MoMLYV 5’ LTR promoters
(23-27, 50). Thus, vLJRSVada and vTKneoPGKada appear to
be appropriate vectors to test whether ada expression can be
observed in bone marrow cells following retroviral infection.

The major endpoint of these gene transfer studies was to
observe the effect of ada expression on nitrosourea drug resist-
ance. Two important results were obtained. (a) CCL-1 clones
expressing ada became more resistant to BCNU and CNU in
proportion to their level of alkyltransferase activity. The parent
CCL-1 cell line has low levels of alkyltransferase activity,
similar to that seen in most murine cells, and is sensitive to
nitrosoureas. The increased drug resistance in CCL-1 cells
expressing ada was similar to that reported by others using
transfection techniques to introduce ada into V79, HeLa,
Chinese hamster ovary, and WEHI-3 cell lines (16-18, 51),
indicating that single gene copy can result in very high levels of
gene expression and transmission of drug resistance.

On the other hand, when we infected the NIH-3T3 cell line,
which is normally BCNU resistant and has moderately high
alkyltransferase activity, clones expressing ada failed to show a
significant increase in drug resistance, despite the fact that total
alkyltransferase activity increased 2- to 15-fold. These results
indicate that there are, in fact, limits to the ability of the
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bacterial alkyltransferase to increase drug resistance in mam-
malian cells. Previous reports have introduced ada into cells
with very low levels of endogenous alkyltransferase activity
(16-18, 51). Lack of an effect in cells expressing high levels of
endogenous alkyltransferase may be due to one of three possible
factors. (a) Even though some cell lines had markedly increased
total cellular alkyltransferase activity, much of this activity
appears to be cytoplasmic rather than being concentrated in the
nucleus. It seems likely that mammalian DNA repair enzymes
are localized to the nucleus because of either their capacity to
bind DNA or the presence of a nuclear localization signal such
as exists for the SV-40 large T-antigen (52). Thus, if the
bacterial alkyltransferase is not concentrated within the nucleus,
it may not efficiently repair DNA damage. () The mammalian
alkyltransferase repairs longer chain O°-methylguanine-DNA
adducts faster than the E. coli protein (6), such that in cells
with moderately high levels of mammalian alkyltransferase, the
addition of the bacterial protein may add little to the level of
drug resistance to chloroethylating agents. (¢) NIH-3T3 cells
may rely on other mechanisms of resistance to nitrosoureas
such as glutathione-S-transferase and/or elevated levels of glu-
tathione (53).

Nonetheless, most murine tissues have low levels of alkyl-
transferase activity, similar to that observed in CCL-1 cells,
making it likely that resistance to N-nitroso compounds includ-
ing the nitrosoureas will be increased following retrovirally
mediated transfer of the ada gene. The most obvious choice for
a retroviral vector is vVLJRSVada, because ada is expressed at
high levels, and vTKneoPGKada, because the PGK promoter
is expressed in hematopoietic cells (23). Once elevated levels of
alkyltransferase are achieved in different tissues in vivo, the role
of this protein in resistance from N-nitroso compound-induced
cytotoxicity, mutagenicity, and carcinogenicity can be tested.
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