Interaction of the Human T-Cell Lymphotropic Virus Type 1 Tax Transactivator with Transcription Factor II A

KAREN E. CLEMMENs,1 GRAZIELLA PIRAS,1 MICHAEL F. RADONOVICH,1 KYEONG SOOK CHOI,1 JANET F. DUVALL,1 JEFF DEJONG,2 ROBERT RÖDER,3 AND JOHN N. BRADY1•*

Laboratory of Molecular Virology, National Cancer Institute, Bethesda, Maryland 20892-5055; Department of Biology, University of Texas at Dallas, Richardson, Texas 75080; and The Rockefeller University, New York, New York 10021

Received 8 April 1996/Returned for modification 17 May 1996/Accepted 3 June 1996

The Tax protein of human T-cell lymphotropic virus type 1 (HTLV-1) is a 40-kDa transcriptional activator which is critical for HTLV-1 gene regulation and virus-induced cellular transformation. Tax is localized to the DNA through its interaction with the site-specific activators cyclic AMP-responsive element-binding protein, NF-κB, and serum response factor. It has been suggested that the recruitment of Tax to the DNA positions Tax for interaction with the basal transcriptional machinery. On the basis of several independent assays, we now report a physical and functional interaction between Tax and the transcription factor, TFIIA. First, Tax was found to interact with the 35-kDa (α) subunit of TFIIA in the yeast two-hybrid interaction system. Importantly, two previously characterized mutants with point mutations in Tax, M32 (Y196A, K197S) and M41 (H287A, P288S), which were shown to be defective in Tax-activated transcription were unable to interact with TFIIA in this assay. Second, a glutathione-S-transferase (GST) affinity-binding assay showed that the interaction of holo-TFIIA with GST-Tax was 20-fold higher than that observed with either the GST-Tax M32 activation mutant or the GST control. Third, a coimmunoprecipitation assay showed that in HTLV-1-infected human T lymphocytes, Tax and TFIIA were associated. Finally, TFIIA facilitates Tax transactivation in vitro and in vivo. In vitro transcription studies showed reduced levels of Tax-activated transcription in cell extracts depleted of TFIIA. In addition, transfection of human T lymphocytes with TFIIA expression vectors enhanced Tax-activated transcription of an HTLV-1 long terminal repeat-chloramphenicol acetyltransferase reporter construct. Our study suggests that the interaction of Tax with the transcription factor TFIIA may play a role in Tax-mediated transcriptional activation.

Human T-cell lymphotropic virus type 1 (HTLV-1) is associated with adult T-cell leukemia and the degenerative neuromuscular disease tropical spastic paraparesis/HTLV-1-associated myelopathy (28, 66, 72, 108). HTLV-1 encodes a 40-kDa protein, Tax, which transforms rodent fibroblasts (90), immortalizes normal human T cells (34), and can induce a leukemia-like disease in transgenic mice (36). Tax is critical for HTLV-1 gene regulation (44, 68, 75, 85) and has been shown to modulate the expression of a number of cellular genes which include genes encoding cytokines (interleukin-1 [IL-1], IL-2, IL-3, IL-6, IL-8, and granulocyte-macrophage colony-stimulating factor) (35, 37, 60, 65, 83, 100, 103), genes encoding cytokine receptors (IL-2 receptor α (14, 15, 43, 52, 76), prote oncogenes (c-fos, c-myc) (2, 20, 23–25), and genes encoding lymphotoxin (69, 70), parathyroid hormone-related protein (18, 98), and major histocompatibility complex class I proteins (77). The deregulation of these Tax-responsive cellular genes may play an important role in HTLV-1 transformation.

The HTLV-1 Tax protein is able to modulate gene expression by several independent mechanisms. Tax can induce the nuclear localization of the NF-κB factors c-rel, p65, p50, and p52 (14, 46, 51, 88) by overriding the inhibitory function of IκB (38, 46, 51, 56, 62, 88). Recent reports suggest that Tax activation of the NF-κB pathway involves the induction of phosphorylation and proteasome-mediated degradation of IκB (56, 62). In addition, Tax interacts with transcription factors such as the serum response factor (23, 25), several NF-κB family members (6, 38, 62, 89), and the bZIP protein, cyclic AMP-responsive element-binding protein (CREB) (1, 33, 104, 105), indirectly forming a complex with the template DNA. Studies have further demonstrated that Tax binds to the DNA-binding basic segment of the bZIP proteins, enhancing their binding affinity and interaction with Tax-responsive, non consensus CRE sites (1, 4, 5, 22, 71, 96, 111). Interestingly, when fused to a Gal4 DNA-binding domain, Tax was able to activate transcription from a minimal promoter, suggesting that Tax possesses an intrinsic transactivation function (26, 79).

On the basis of these studies, it is thought that after localizing to the DNA through interaction with site-specific activators, Tax may affect the dynamics of transcription through contact with the basal transcription machinery.

RNA polymerase II-directed transcription requires the assembly of a large preinitiation transcription complex composed of the basic transcription factors TFIIA, TFII B, TFII D (TATA-binding protein [TBP] and TBP-associated factors [TAFs]), TFII F, TFIII H, and TFII E (reviewed in references 81 and 110). Transcriptionally competent preinitiation complexes formed in vitro assemble by an ordered multistep pathway beginning with the binding of TFII D to the TATA box at the promoter region on the DNA template (7, 63, 94). TFII A, which directly binds TBP, is thought to enter the complex at an early point in the assembly process after or simultaneously with the TFII D-DNA nucleation step (73, 97, 109, 110). The assembly process then continues with the subsequent association of TFII B, RNA polymerase II complexed to TFII F, TFII E, and TFII H (109).

Transcriptional activators exhibit activation domain-dependent interactions with TBP, TFII B, TFIII H, and TAFs (9, 11–13, 32, 41, 54, 86, 91, 95, 101, 112) and may function by
increasing the number of functional preinitiation complexes (12, 39, 54, 109). Recent studies suggest that TFIIA may also be targeted by activators and coactivators (27, 49, 53, 67). TFIIA was initially observed to preclude the association of protein inhibitors with TBP-promoter complexes, whose interaction with TBP can prevent the assembly of functional preinitiation complexes (3, 42, 48, 50, 58, 59, 99). However, additional studies in which highly purified and potentially inhibitor-free transcription factors were used showed a TFIIA enhancement of activated transcription suggesting a direct role for TFIIA in the activation process (87). In these and other systems, TFIIA is also able to enhance basal transcription reconstituted with TBP (16, 48, 55, 87). As pointed out by Goodrich et al. (31a), the prevalence of promoter diversity suggests that interactions between general transcription factors, transcriptional activators, and the DNA template may vary from promoter to promoter.

It is speculated that a critical rate-limiting step in activator-dependent preinitiation complex formation is the formation of the DNA-TFIIID-TFIIA complex (10). VP16 and the Epstein-Barr virus transactivator Zta, which both interact with TFIIA in an activation domain-dependent manner (49, 67), increase the stability and rate of formation of DNA-TFIIID-TFIIA complexes (49, 53, 67). Another recent study found that a GAL4-VP16 fusion protein stimulated the formation of an activated transcription complex, requiring the presence of TFIIA, the TFIID TAFs, and the nonhistone chromosomal protein HMG-2, a protein that appears to play a role in the architecture of the transcription complex (82). Purified human TFIIA is composed of stoichiometric amounts of a 35-kDa (α) subunit and a 19-kDa (β) subunit, generated from a 55-kDa precursor (αβ), and a 12-kDa subunit (γ), all of which are essential for TFIIA function (16, 17, 55, 67, 87, 106, 107). The cDNAs encoding the highly homologous human, Drosophila, and yeast TFIIA subunits have been cloned (16, 17, 45, 54, 109). Recent studies suggest that TFIIA may also be involved in the transcriptional activation of HTLV-1 Tax transactivation. In vitro transcription assays with cell-expressed TFIIA subunits demonstrated that TFIIA is important for the Tax transactivation. In vitro transcription assays with cell-expressed TFIIA subunits demonstrated that TFIIA is important for the Tax transactivation.

MATERIALS AND METHODS

Two-hybrid interaction assay. The LexA DNA-binding domain (DBD) fusion proteins were generated with the 2μm *HIS3* yeast shuttle vector, pNL202, which is identical to pEG202 (31) with the addition of a simian virus 40 nuclear localization signal (as in pNL202), the B42 acidic activation domain, and the influenza virus HA1 epitope tag (total of 107 amino acids) (31). The LexA DBD fusion proteins are constitutively expressed from the *ADH* promoter, while the AD fusion proteins are expressed from the galactose-inducible, glucose-repressed Gal-I promoter. The 2μm *URA3* reporter plasmid, pJK103, directs the synthesis of the lacZ gene from a minimal *Gal1* promoter controlled by two high-affinity *lexA* operator sites (31) which is transcriptionally silent unless bound by a LexA-containing protein or protein complex with activation potential.

Cloning of the fusion protein constructs was conducted by PCR amplification of the LexA and TBP DBD fragments, in the high-fidelity Pwo polymerase (New England Biolabs) and primers with the appropriate restriction sites designed to omit the initiating methionine. Three independent clones of the Tax-DBD fusion construct (and mutants) were tested with at least two independent clones of the p55 and p35 TFIIA-AD fusion constructs. The identity of the Tax mutants (a kind gift of Warner Greene, University of California, San Francisco) was verified by sequence analysis (Sequenase; U.S. Biochemicals).

GST-fusion protein binding assays. Bacterially generated glutathione-S-transferase (GST)-Tax, GST-Tax M32, GST-TBP, and GST-TBP fusion proteins were purified by binding to glutathione-Sepharose beads (Pharmacia) and quantified by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis followed by Coomassie blue staining. A 100-μg sample of the GST-fusion protein-bead complex was incubated with 1.5 mg of HeLa whole-cell extract (WCE) (57) for 2 h at 4°C in buffer A (80 mM NaCl, 1% Nonidet P-40, 20 mM Tris [pH 7.9]). After centrifugation (flowthrough) and subsequent washing of the protein-complexed beads were washed extensively with buffer B (80 mM NaCl, 150 mM NaCl, 0.25% Triton X-100, 20 mM Tris [pH 7.9]) and then washed with 400 μl of detergent buffer C (500 mM KCl, 1% Triton X-100, 20 mM Tris [pH 7.9]). Cellular proteins which bound to the fusion-protein-complexed beads were eluted with buffer D (2.0 M NaCl, 10% glycerol, 20 mM Tris [pH 7.9]). The flowthrough and wash fractions were precipitated with trichloroacetic acid. A 100-μg sample of HeLa cell extract, 1/15 of the total flowthrough, and the complete wash and elution fractions were run on an SDS-4 to 20% polyacrylamide gel. Western blot (immunoblot) analysis was conducted with a 1:2,000 dilution of polyclonal antibody to the influenza virus HA1 epitope (12CA5) as a control. Selected samples were analyzed with the appropriate horseradish peroxidase-linked secondary antibody (1:1,000 dilution of Tax monoclonal antibody 7G9). Immunoblot analysis was conducted with a 1:2,000 dilution of antibody to TFIIA (anti-TFIIA, C64, Santa Cruz Biotechnology, Inc.). TFIIA and TFIIH were visualized by enhanced chemiluminescence (see the section on immunoblot analysis, below).

Immunoprecipitation and immunoblot analysis. HTLV-1-infected C81 human T lymphocytes, which express high levels of Tax, were lysed in TNN buffer (50 mM NaCl, 1% NP-40, 0.5% Nonidet P-40, 50 mM NaF, 0.2 mM sodium orthovanadate, 1 mM dithiothreitol, 100 μM of phenylmethylsulfonyl fluoride, 20 μg of aprotinin per ml, 10 μg of leupeptin per ml) for 20 min on ice. Cellular debris was removed by centrifugation for 10 min (30). Immunoprecipitations were conducted by incubating 300 μg of total cell protein for 1 h at 4°C with 3 μl of preimmune rabbit serum, rabbit antibody directed against the 55-kDa (α) subunit of TFIIA (Onogene Sciences), rabbit antibody directed against the 55-kDa (aβ) TFIIA subunit, a mixture of four anti-Tax monoclonal antibodies with different specificities, or a monoclonal antibody to the influenza virus HA1 epitope (12CA5) as a control. Selected samples were preclarified with 40 μl of nonspecific rabbit antiserum prior to treatment with immune serum. Antibody-bound proteins were collected with 25 μl of a 0.1-g/ml protein A-Sepharose (Pharmacia) solution in TNN buffer. Bound proteins were washed four times in 500 μl of TNN buffer, eluted by boiling in Laemmli buffer, and separated on an SDS–10% polyacrylamide gel. The proteins were transferred to Immobilon-P membranes (Millipore) at 100 V for 1 h at 4°C with Western transfer buffer (0.1 M glycine, 12.5 mM Tris [pH 8.3]). Membranes were blocked with 5% milk powder in TNET buffer (10 mM Tris [pH 7.5], 2.5 mM EDTA, 50 mM NaCl, 0.1% Tween 20) for 1 h, washed in TNET without milk, and incubated for 1 h in primary antibody (1:1,000 dilution of monoclonal antibody or 1:2,500 dilution of antibody to the 55-kDa (µ) subunit of TFIIA) at room temperature. After extensive washing, the immunoprecipitated proteins were detected with the appropriate horseradish peroxidase-linked secondary antibody followed by enhanced chemiluminescence (Amerham).

In vitro transcription assay. Assays were conducted with the pTRE-1 plasmid containing two copies of the promoter-proximal 21-bp repeat from the HTLV-1 long terminal repeat upstream of the chicken ovalbumin TATA box and a G418 cassette as described by Duval et al. (19). Samples were analyzed on a 4% denaturing polyacrylamide gel. HeLa whole-cell extracts were depleted of TFIIA by incubation with protein A-Sepharose-coupled (Pharmacia) preimmune or immune serum specific for the 55-kDa (αβ) subunit of TFIIA (19). The depleted extracts and bound proteins were further purified from the TFIIA and TBP by Western blot analysis as described by Duval et al. (19).
Transfection and CAT assays. The cDNA encoding the 55-kDa precursor (αb) of TFIIA (pCMV55) was cloned as a HindIII-NotI fragment and the cDNA encoding 12 kDa (γ) of TFIIA (pCMV12) was cloned as a HindIII-BamHI fragment into the pcDNA3 vector (Invitrogen), which directs transcription from the cytomegalovirus promoter. The cDNA for HTLV-1 Tax was expressed from the cytomegalovirus promoter by using the pCTax construct (84). pU3RCAT contains the upstream HTLV-1 long terminal repeat (LTR) driving the chloramphenicol acetyltransferase reporter gene (47). Human Jurkat T lymphocytes (78) were grown in RPMI1640 medium (Gibco/BRL) supplemented with 10% fetal calf serum. Cells (1.5 \times 10^7) were electroporated as described previously (47) with 0 to 10 ng of pCTax, 0 to 50 ng of pCMVp55 (αb), 0 to 200 ng of pCMVp12 (γ), and 1 μg of pU3RCAT. Chloramphenicol acetyltransferase activity was assayed 16 h posttransfection as described previously (40). Results were quantitated with a PhosphorImager and the Image Quant program (Molecular Dynamics).

RESULTS

Tax associates with TFIIA in S. cerevisiae. The interaction between Tax and TFIIA was first analyzed in vivo with the yeast two-hybrid interaction system (31). Wild-type Tax and several previously characterized Tax point mutants (84) were generated as fusion proteins with the DBD of LexA by in-frame cloning into the yeast shuttle vector, pNL202. The 55-kDa precursor (αb), and the 35-, 19-, and 12-kDa (α, β, and γ, respectively) subunits of TFIIA were expressed as fusion proteins with the epitope-tagged (HA1) acidic AD by using the pJG4-5 shuttle vector. Interaction between the protein fused to the LexA DBD and the protein fused to the acidic AD results in the localization of the AD to the LexA operator on the pJK103 reporter plasmid and subsequent activation of the lacZ gene.

The Tax DBD, which possessed a low intrinsic level of activation (twofold above that of the DBD vector alone [data not shown]), showed a significant level of interaction with the 35-kDa (α) subunit of TFIIA (p35-AD) (11.4-fold over Tax DBD levels) and with the 55-kDa (αb) precursor protein (p55-AD) (5.2-fold) (Fig. 1A). Both wild-type and mutant Tax proteins failed to interact with the 19-kDa (β) or 12-kDa (γ) TFIIA subunits (Fig. 1A) (data not shown). Tax was also tested for interaction with the general transcription factors TBP and TFIIIB (Fig. 1A). Although earlier reports suggest an association between Tax and TBP in vitro (8), the interaction between these two proteins in the yeast two-hybrid system was negligible. Similarly, no interaction was observed between Tax and TFIIIB (Fig. 1A). Additionally, when TFIIA was tested for association with the Drosophila transactivator Bicoid, no interaction was observed, implying that TFIIA does not bind to transactivators indiscriminately (data not shown). As a further control for these studies, the interaction of Tax with TFIIA was compared with the interaction of TBP and TFIIA, which have been shown previously to interact in the cell. In both vector orientations, TBP and TFIIA interaction levels were approximately twofold higher than the levels of interaction between Tax and TFIIA (data not shown). Expression of the TBP, TFIIIB, Bicoid, and TFIIA fusion proteins were confirmed by Western blot analysis (data not shown).

Several Tax point mutants, previously tested in lymphocytes for transactivation of the HTVL-1 LTR, via the CREB activation pathway, and the human immunodeficiency virus type 1 (HIV-1) LTR, via the NF-κB activation pathway, were tested for interaction with TFIIA (Fig. 1B) (84). We chose to evaluate a subset of mutants whose previous characterization (84) was not biased as a result of abnormal protein localization or stability (Fig. 1C). The M3 (F13A G14S), M16 (P92A P93S), M19 (Q126A, H127S), and M45 (I315R, P316S) mutants were shown previously to transactivate, often weakly, both the HTVL-1 and HIV-1 LTR promoters. The M47 mutant (L319R, L320S) was able to activate only the HIV-1 LTR.
The M21 (P134A, D135S), M30 (D192A, G193S), M32 (Y196A, K197S), and M41 (H287A, P288S) mutants were unable to activate either viral LTR (84). Interestingly, the transactivation-defective Tax mutants, M32 (Y196A, K197S) and M41 (H287A, P288S) failed to interact with either the 55-kDa (αβ) precursor or the 35-kDa (α) subunit of TFIIA. The remaining Tax mutants used in this assay were able to interact with both the p55 and p35 TFIIA proteins.

Western blot analysis demonstrated that all the mutant Tax DBD fusion proteins, including M32 and M41, were expressed at similar levels during coexpression of the TFIIA-AD fusion proteins, demonstrating that the lack of interaction is not due to the absence of fusion protein (Fig. 2A and B). In addition, the p55, p35, p19, and p12 TFIIA AD fusion proteins were all expressed in the presence of the wild-type Tax DBD, indicating that the inability of Tax to interact with the p19 and p12 subunits was not due to a change in the stability or expression of the fusion proteins (Fig. 2C and D).

TFIIA from HeLa cells interacts with GST-Tax. We next determined if native TFIIA could interact with the HTLV-1 Tax protein. HeLa WCE were incubated with purified GST-Tax, GST-Tax M32, GST-TBP, or GST protein complexed to glutathione-Sepharose beads. Following a 2-h incubation, the supernatant was collected (flowthrough fraction) and the beads were extensively washed with a low-ionic-strength buffer (buffer B [containing 80 mM KCl and 150 mM NaCl]) and then washed once with a higher-strength buffer (buffer C [containing 300 mM KCl]). The bound proteins were then eluted from the beads with 2.0 M NaCl (buffer D). Then 1/15 volume of the flowthrough fraction and the entire wash and elution fractions were examined by Western blot analysis for the 35-kDa (α) subunit of TFIIA (Fig. 3A). TFIIA bound to GST-Tax but failed to interact with GST alone (Fig. 3A, lanes 7 and 10). The GST-Tax M32 mutant, which failed to interact with TFIIA in the two-hybrid interaction assay, demonstrated a 20-fold reduction in TFIIA-binding when compared with wild-type GST-Tax (Fig. 3B, lanes 11 and 12). As observed in the two-hybrid assay, interaction between TBP and TFIIA was greater than interaction between Tax and TFIIA. However, in the affinity column, the difference in association is more pronounced (TBP bound TFIIA 14-fold more than Tax did) (Fig. 3A, lanes 4 and 7).

As a control for these studies and to confirm results from the two-hybrid assay, the interaction of the GST fusion proteins with TFIIA was assessed by stripping the original Western blot and reprobing with antibody directed against the 35-kDa (α) subunit of TFIIA (anti-TFIIA) or a nonspecific rabbit polyclonal antiserum directed against the 35-kDa (α) subunit of TFIIA (Fig. 3A). TFIIA bound to GST-Tax but failed to interact with GST alone (Fig. 3A, lanes 7 and 10). The GST-Tax M32 mutant, which failed to interact with TFIIA in the two-hybrid interaction assay, demonstrated a 20-fold reduction in TFIIA-binding when compared with wild-type GST-Tax (Fig. 3B, lanes 11 and 12). As observed in the two-hybrid assay, interaction between TBP and TFIIA was greater than interaction between Tax and TFIIA. However, in the affinity column, the difference in association is more pronounced (TBP bound TFIIA 14-fold more than Tax did) (Fig. 3A, lanes 4 and 7).

Tax coprecipitates with TFIIA in HTLV-1 infected cells. We then determined if Tax could associate with native TFIIA by coimmunoprecipitation analysis by using WCE from Tax-expressing C81 T lymphocytes. Proteins were immunoprecipitated with a polyclonal antiserum directed against the 35-kDa (α) subunit of TFIIA (anti-TFIIA) or a nonspecific rabbit serum (PI), and this was followed by Western analysis of the precipitated proteins with an anti-Tax antibody. Tax precipitated with the anti-TFIIA but not with the nonspecific rabbit serum (Fig. 4A). In a reciprocal experiment, we immunoprecipitated proteins from the C81 cell extracts with anti-Tax monoclonal antibodies and subjected them to immunoblotting with TFIIA-specific antisera. The 35-kDa (α) subunit of TFIIA was immunoprecipitated with the monoclonal antibody to Tax (Fig. 4B, lane 3) but not with a control monoclonal antibody against the HA1 epitope (12CA5) or with beads alone (protein...
Transactivation by Tax was performed by addition of baculovirus-generated Tax (lanes 3 and 4), or precleared with control preimmune antibody (lanes 5 and 6). and 2), depleted of TFIIA by preclearing the WCE with anti-TFIIA antibody (lanes 3 and 4), or precleared with control preimmune antibody (lanes 5 and 6). Transactivation by Tax was performed by addition of baculovirus-generated Tax (lanes 2, 4, and 6).

FIG. 5. TFIIA is required for Tax transactivation in vitro. In vitro transcription assays were conducted with the pTRE-1 Id plasmid, which contains two 21-bp repeat elements from the HTLV-1 LTR, an ovalbumin promoter, and a G-free cassette. Upon addition of Tax, transcription was increased approximately sixfold (Fig. 5, lanes 1 and 2). Antibody specific for Tax neutralized this effect, indicating that the enhanced transcription is Tax dependent (reference 19 and data not shown). When the extract was depleted of TFIIA by using a TFIIA-specific antibody (anti-p55), a decrease in both basal and Tax-transactivated transcription was observed (lanes 3 and 4). The decrease in basal transcription to background levels prevented an accurate quantitative comparison of the fold Tax transactivation. We calculate, however, that the level of Tax-transactivated transcription in the TFIIA-depleted extract was reduced 11-fold compared with that of the untreated control (lanes 2 and 4). Treatment of the extract with preimmune serum, which modestly reduced the overall level of basal or Tax-activated transcription, did not significantly reduce the level of Tax transactivation (six- to sevenfold increase) (lanes 5 and 6). As controls for these experiments, Western blot analysis confirmed that TFIIA was absent in the TFIIA antibody-depleted cell extract but present in the preimmune antibody-depleted extract (19). Furthermore, when purified TFIIA was added back to the TFIIA-depleted cell extract Tax transactivation was restored (data not shown) (19). These results suggest that TFIIA is important for Tax-activated transcription, in that Tax transactivation is reduced in the absence of TFIIA.

DISCUSSION

Most site-specific activators are modular in structure with distinct and often interchangeable domains required for DNA binding, dimerization, and transactivation (39, 64, 92). Numerous reports describe a physical association between the AD of transactivating proteins and the general transcription factors TBP, TFIIA, TFIIH, TFIID, and the TFIID TAFs (9, 11, 13, 32, 41, 54, 86, 91, 97, 101, 112). The relevance of such interactions has been supported by studies which demonstrate by mutagenic analysis that loss of association between these activators and the general transcription factors corresponds to a reduced capacity of the transactivator to stimulate transcription (41). In this study, we provide evidence for a physical interaction between Tax and the 35-kDa (α) subunit of TFIIA by using the yeast two-hybrid interaction system, by association of GST-Tax with native TFIIA from HeLa cells, and by coimmunoprecipitation of Tax and TFIIA in Tax-expressing T lymphocytes (lanes 1 and 2).
We also demonstrate that TFIIA can enhance Tax-activated transcription from a Tax-responsive promoter in vitro and from the HTLV-1 LTR in T lymphocytes. This enhanced activation appears to be specific to the interaction of TFIIA with Tax, since Tax failed to interact with TBP or TFIIIB. Interestingly, we identified two previously characterized (84) activation-defective point mutants of Tax, M32 (Y196A, K197S) and M41 (H287A, P288S), which were unable to interact with TFIIA in the yeast two-hybrid assay. When tested in the GST-binding assay, the M32 mutant showed a 20-fold reduction in TFIIA binding compared with wild-type Tax.

Localizing the region(s) of Tax critical to its activation function has been hindered by the pleiotropic nature of Tax. In addition, mutagenesis within multiple regions of Tax often renders the protein transcriptionally inactive, further complicating the structure-function analysis of Tax (80, 84, 93). Nevertheless, several studies involving Tax point and deletion mutants have succeeded in segregating and assigning functions to different domains of Tax (84). Transactivation of the HTLV-1 LTR, mediated by CREB, is affected by mutations in the amino and carboxy termini, while transactivation of the HIV-1 LTR, involving NF-κB, is sensitive to mutations in the central region of Tax.

One approach used to define the minimal activation domain of Tax has been to fuse different domains of Tax to a heterologous DBD. One such study in which GAL4-Tax was used to activate transcription from a minimal promoter with upstream GAL4-binding sites found that amino acids 289 to 320 of Tax defined the minimal AD, although flanking regions of Tax enhanced this effect (79). A second study involving GAL4-Tax concluded that two contiguous domains of Tax encompassing amino acids 2 to 255 and 227 to 337 were required for Tax-activated transcription (93). Interestingly, the M32 (Y196A, K197S) and M41 (H287A, P288S) mutants, which failed to interact with the 55-kDa (αβ) or 35-kDa (α) subunits of TFIIA, are defective in transactivating both the HIV-1 and HTLV-1 LTRs. These mutants may interfere with Tax-TFIIA association either by disrupting the structure of a limited region of Tax that is required for this interaction or by exerting a more global effect on the structural integrity of the Tax protein. Significantly, the M32 (Y196A, K197S) mutation resides within a region of Tax rendered transcriptionally inactive by mutagenesis. In contrast, mutants altered in Tax immediately surrounding the M41 (H287A, P288S) point mutant, such as M39, M40, M42, and M43 (84), show nearly wild-type levels of transactivation from both LTRs. It is therefore possible that the M32 mutation affects a region of Tax critical to the structural integrity of the protein. The M41 mutant, within the minimal activation domain, may be important for interaction with TFIIA. It is important to note that the M21 and M30 mutants, defective in transactivation of both the HIV-1 and HTLV-1 LTRs (84), interacted with TFIIA in the two-hybrid assay. It is possible that Tax-activated transcription requires the interaction of Tax with other transcription factors in addition to TFIIA and that the M21 and M30 Tax mutants are deficient in this interaction. For example, Tax may interact with TAFs or other proteins which constitute the holoenzyme.

TFIIA has been shown to enhance the stability of TFIIID-promoter complexes as well as to preclude the association of inhibitors that target TBP. The Epstein-Barr virus transactivator Zta and the C-terminal domain of VP16 have been shown to stabilize and increase the rate of formation of DNA-TFIIID-TFIIA complexes upon which functional preinitiation complexes are assembled (10, 49). Zta, which, like Tax, lacks a classical transactivation domain, interacts with the p55 (αβ) subunit of TFIIA. In contrast, the C-terminal domain of the acidic activator VP16 interacts with the p12 (γ) TFIIA subunit. A distinct and more N-terminal activation domain of VP16 fails to interact with TFIIA, suggesting that contact with TFIIA represents only one of the pathways through which VP16 operates (49). Since TFIIA is required for many, if not all, activators to stimulate transcription, the requirement may not be manifested as an activator interaction in some cases.

Since Tax operates through contact with DNA-binding transactivators, it is likely that synergy plays an important role in Tax-mediated transactivation. Indeed, interactions between Tax and several site-specific activators, which may interact with the general transcription factors, have been described. For example, CREB, which is involved in Tax-mediated activation, interacts with both TFIIH, perhaps in conjunction with the CREB-binding protein, as well as with TFIID (21, 102). Our results suggest that Tax can interact with TFIIA through the 35-kDa (α) subunit. Hence, it is possible that the multimeric Tax-CREB-CBP complex targets multiple components of the transcription initiation complex including TFIIA, TFIIH, and TFIID. The Tax-CREB interaction, as well as their indepen-
dent interactions with the transcriptional machinery, one may con-
cfer a greater stability on this multiprotein complex, allowing for
the subsequent addition of the remaining transcription factors.
Alternatively, the Tax-CREB component may structurally modify
the transcription complex such that enhanced transcrip-
tion from CRE-containing Tax-responsive promoters is favored.

ACKNOWLEDGMENTS

We thank Ramin Sheikhattar and Fatah Kashanchi for sharing un-
published data regarding the interaction of Tax with different general
transcription factors. We also thank Jürgen Dittmer for a critical eval-
uation of the manuscript and other members of the Laboratory of
Molecular Virology for helpful discussions.

REFERENCES

tropic virus type I Tax mediate interactions with activator protein CREB
c-fos promoter mediate transactivation by HTLV-I tax protein. Oncogene
binding to DNA. Genes Dev. 7:844–856.
enhancement by the human T-cell leukemia virus transactivator Tax. Nature
with 21 bp Tax-response elements of HTLV-1 LTR. Oncogene 7:257–262.
T-cell leukemia virus type I Tax associates with and is negatively regulated
by the NF-kB p100 gene product: implications for viral latency. Mol. Cell.
mediate complexes in transcription initiation by RNA polymerase II. Cell
1993. Functional and biochemical interaction of the HTLV-I Tax trans-
activator with TBP. EMBO J. 12:4269–4278.
Assembly of recombinant TFII D reveals differential coactivator require-
nism for transcriptional synergy by eukaryotic activators. Nature (London)
TFIID subunit that interacts with multiple transcriptional activators. Sci-
ence 267:531–536.
multiple steps of preinitiation complex formation. Nature (London) 366:
531–536.
transcriptional activator and transcription factor IIB in vivo. Nature (Lon-
don) 362:549–553.
Jalinot. 1993. The transcriptionally active factors mediating the effect of the
HTLV-I Tax transactivator on the IL-2R alpha kappa B enhancer include the
product of the c-ecl proto-oncogene. Oncogene 8:867–875.
15. Cross, S. L., M. B. Feinberg, J. B. Wolf, N. J. Holbrook, F. Wong-Staal,
and W. J. Leonard. 1987. Regulation of the human interleukin-2 receptor a
chain promoter: activation of a non-functional promoter by the transacti-
scription factor TFIIA: characterization of a cDNA encoding the small
Acad. Sci. USA 92:3313–3317.
both the p32 and p19 subunits of human TFIIA. Genes Dev. 7:2220–2229.
of the P2 promoter of the parathyroid hormone related protein (PTHrP) by
HTLV-I Tax; evidence for the involvement of transcription factor El's-1.
J. Virol. 67:6087–6096.
Brady. 1995. Transactivation of the HTLV-I Tax-responsive 21 bp repeats
requires hTFFD and hTFIHA. J. Virol. 69:5077–5086.
20. Dymo, M. P., D. J. Kessler, D. B. Spicer, C. Bartholomew, J. L. Cleveland,
promoter by human T cell leukemia virus type 1 tax is mediated by
NF-kB. J. Biol. Chem. 267:16288–16291.
47. Kim, T. K., Y. Zhao, H. Ge, R. Bernstein, and R. G. Roeder. 1995. TATA-binding protein residues implicated in a functional interplay between negative cofactor NC2 (Dr1) and general transcription factors TFIIA and TFIIIB. J. Biol. Chem. 270:11745–11748.
49. Lin, Y., and M. R. Green. 1995. A class of activation domain interacts directly with TFIIA and stimulates TFIIA-TFIID-pro- active cofactor NC2 (Dr1) and general transcription factors TFIIA and TFIIIB. J. Biol. Chem. 269:15029–15034.

