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Abstract

Basal autophagy plays a critical role in maintaining cel-
lular homeostasis and genomic integrity by degrading 
aged or malfunctioning organelles and damaged or 
misfolded proteins. However, autophagy also plays a 
complicated role in tumorigenesis and treatment 
responsiveness. It can be tumor-suppressing during 
the early stages of tumorigenesis (i.e., it is an anti-tu-
mor mechanism), as reduced autophagy is found in tu-
mor cells and may be associated with malignant 
transformation. In this case, induction of autophagy 
would seem to be beneficial for cancer prevention. In 
established tumors, however, autophagy can be tu-
mor-promoting (i.e., it is a pro-tumor mechanism), and 
cancer cells can use enhanced autophagy to survive 
under metabolic and therapeutic stress. The pharma-
cological and/or genetic inhibition of autophagy was 
recently shown to sensitize cancer cells to the lethal ef-
fects of various cancer therapies, including chemo-
therapy, radiotherapy and targeted therapies, sug-
gesting that suppression of the autophagic pathway 
may represent a valuable sensitizing strategy for can-

cer treatments. In contrast, excessive stimulation of 
autophagy may also provide a therapeutic strategy for 
treating resistant cancer cells having high apoptotic 
thresholds. In order for us to develop successful au-
tophagy-modulating strategies against cancer, we 
need to better understand how the roles of autophagy 
differ depending on the tumor stage, cell type and/or 
genetic factors, and we need to determine how specific 
pathways of autophagy are activated or inhibited by the 
various anti-cancer therapies.
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Introduction

Autophagy is a self-digestive process that ensures 
the lysosomal degradation of superfluous or damaged 
organelles and misfolded proteins (Levine and 
Klionsky, 2004). Basal autophagy helps maintain 
homeostasis by contributing to protein and organelle 
turnover, while additional autophagy is induced in 
stressed cells as a cell-survival mechanism. 
Autophagic defects have been implicated in 
various diseases and health states, including 
neurodegeneration, aging, infection, myopathy, 
Crohn's disease and cancer (Levine and Kroemer, 
2008). However, the role of autophagy in cancer is 
quite complicated and still somewhat controversial; 
it appears to be tumor suppressive during cancer 
development, but contributes to tumor cell survival 
during cancer progression (Rouschop and Wouters, 
2009). Furthermore, tumor cells can use autophagy 
to resist various anti-cancer therapies (Chen and 
Karantza-Wadsworth, 2009). Cancer cells experience 
higher metabolic demands and stresses than 
normal cells, due to their rapid proliferation and 
altered glycolytic metabolism (White and DiPaola, 
2009), and thus may depend more heavily on 
autophagy for survival (Amaravadi et al., 2011). In 
many experimental settings, the inhibition of 
autophagy has been shown to enhance the 
therapeutic benefits of various cancer therapies 
(Chen and Karantza-Wadsworth, 2009; Chen et al., 
2010). However, strategies to induce autophagic 
cell death have also shown promise as a means 
for killing certain types of cancer cells with high 
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Figure 1. Oncogenes and tumor suppressors associated with the regulation of autophagy. Tumor suppressors (blue) except for cytoplasmic p53 are 
among the factors positively regulating autophagy, whereas oncogene products (pink) inhibit autophagy. Growth factor signaling activates the 
PI3K/Akt/mTOR axis resulting in autophagy inhibition. In contrast, class III PI3K activates autophagy. Low cellular energy levels with increased AMP/ATP 
ratio activate the LKB1-AMPK-mTOR pathway to also upregulate autophagy. p53 exhibits complex autophagy regulation, as nuclear p53 activated by 
genotoxic or oncogenic stress positively regulates autophagy by inhibiting mTOR in an activated AMPK- and TSC1/TSC2-dependent manner, whereas 
cytoplasmic p53 can suppress autophagy.

apoptotic thresholds (Gozuacik and Kimchi, 2007). 
Although we still have much to learn about the 
regulation of autophagy in cancer, it appears to 
provide a promising target for cancer treatment. 
This review examines the multiple roles of auto-
phagy as a novel target for anticancer therapy and 
assesses the current efforts and remaining tasks in 
the development of autophagy-modulating strategies 
against cancer.

Roles of autophagy in cancer

Autophagy as a tumor-suppressing mechanism

Deficiencies in autophagy lead to the accumulation of 
damaged macromolecules and organelles (particularly 
mitochondria), subsequently inducing oxidative 
stress, DNA damage and chromatin instability 
(Levin and Klionsky, 2004; Chen and Karantza, 
2011). Thus, autophagic defects are ultimately 
associated with the accumulation of oncogenic 
mutations and increased tumor susceptibility 
(Karanta-Wadsworth et al., 2007; Mathew et al., 
2007). Some of the most important evidence for 
the role of autophagy in tumor suppression comes 
from studies on the Bcl-2-interacting protein, Beclin 
1 (BECN1, also called ATG6). For example, mono- 
allelic deletion of Beclin 1 has been frequently 
observed in human breast (Futreal et al., 1992), 
ovarian (Aita et al., 1999) and prostate cancers 
(Gao et al., 1995), and mice with a disrupted Beclin 

1 gene had a higher incidence of lymphoma, lung 
cancer and liver cancer (Qu et al., 2003; Yue et al., 
2003). Constitutive activation of the PI3K-Akt-mTOR 
axis, a common characteristic of cancer (LoPiccolo 
et al., 2008), is known to suppress autophagy 
(Janku et al., 2011), while promoting tumor cell 
growth, proliferation and survival (Martelli et al., 
2007) (Figure 1). A number of tumor suppressor 
proteins have been shown to promote autophagy, 
including Atg4c (Mariño et al., 2007), Bax- 
interacting factor-1 (Bif-1) (Takahashi et al., 2007), 
BH3-only proteins (Maiuri et al., 2007), DAPkinase 
(Bialik and Kimchi, 2010), LKB1 (Liang et al., 
2007), ultraviolet radiation resistance-associated 
gene (UVRAG) (Liang et al., 2006), PTEN (Arico et 
al., 2001), TSC (Zhou et al., 2009), nuclear p53 
(Maiuri et al., 2010) and AMPK (Luo et al., 2010). 
Furthermore, autophagy has been shown to reduce 
intratumoral necrosis and local inflammation 
(Degenhardt et al., 2006). Collectively, these 
results support the contention that autophagy plays 
a tumor-suppressing role in cancer, and suggest 
that reduced autophagic activity may constitute a 
hallmark of cancer (Hanahan and Weinberg, 2011). 

Autophagy as a pro-survival and resistance 
mechanism

In established cancer cells, metabolic stress (which 
arises as a result of insufficient nutrient or oxygen 
supplies and/or the increased energetic demands 
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Cancer type Treatment
Accelerated cell death by autophagy inhibition

Reference
Early step Late step siRNA

Breast cancer γ‐radiation Bcelin 1, ATG3, ATG4b, 
ATG4c, ATG5, ATG12 

Apel et al., 2008 

Tamoxifen 3‐MA ATG5, Beclin 1, ATG7 Schoenlein et al., 2009 
Bortezomib LC3, HDAC6, ATF4 Milani et al., 2009 
Trastuzumab 3‐MA BFA LC3 Vazquez‐Martin et al., 2009 
Sulforaphane BFA Kanematsu et al., 2010

Colorectal cancer Bortezomib Beclin 1 Fels et al., 2008
γ‐radiation Beclin 1, ATG5, ATG7, 

UVRAG
Apel et al., 2008

5‐FU 3‐MA ATG7 Li et al., 2010 
Sulforaphane 3‐MA Nishikawa et al., 2010

Glioma Temozolomide BFA Kanzawa et al., 2004
4‐HPR 3‐MA BFA Tiwari et al., 2008
γ‐radiation 3‐MA BFA Beclin 1, ATG5 Lomonaco et al., 2009
Imatinib BFA, RTA 203 Shingu et al., 2009
PI‐103 3‐MA BFA, Monensin Fan et al., 2010
Rapamycin BFA Fan et al., 2010

Chronic myeloid 
leukemia (CML)

SAHA 3‐MA CQ Carew et al., 2007
OSI‐027 (mTOR) CQ Yogalingam and 

Pendergast, 2008
Imatinib CQ, BFA ATG5, ATG7 Bellodi et al., 2009
Imatinib 3‐MA Crowley et al., 2011

Multiple Myeloma 
(MM)

Bortezomib BFA Kawaguchi et al., 2011

Prostate cancer Androgen deprivation 3‐MA Beclin1 Li et al., 2008
ADI‐PEG20
(arginine deiminase)

CQ Beclin1 Kim et al., 2009

Saracatinib
(Src kinase)

3‐MA CQ ATG7 Wu et al., 2010

Skin cancer Cisplatin 3‐MA ATG5 Claerhout et al., 2010
Lymphoma Tamoxifen CQ shATG5 Amaravadi et al., 2007
Gastrointestinal 

stromal tumors 
(GISTs)

Imatinib CQ, Quinacrine ATG7, ATG12 Gupta et al., 2010

Gastric cancer Quercetin CQ ATG5, Beclin1 Wang et al., 2011

Table 1. Preclinical studies supporting autophagy inhibition for cancer treatment

of rapidly dividing tumor cells) induces autophagy 
as the cells seek an alternative source of energy 
and metabolites (Onodera and Oshumi, 2005; 
Degenhardt et al., 2006; Jones and Thompson, 
2009; Rosenfeldt and Ryan, 2009; Rabinowitz and 
White, 2010). Furthermore, autophagy may also be 
induced as an adaptive cellular response to various 
cancer therapies, leading to chemoresistance and 
cancer cell survival (Chen and Karantza- Wadsworth, 
2009; White and DiPaola, 2009). A number of studies 
in various cancers have examined the inhibition of 
autophagy through pharmacological means, such 

as treatment with 3-methyladenine (3-MA, a PI3K 
III inhibitor), bafilomycin A (a specific inhibitor of 
vacuolar-type H+-ATPase), chloroquine (CQ) or 
hydroxychloroquine (HCQ) (lysosomotropic agents 
that impair fusion between autophagosomes and 
lysosomes), or by knockdown of autophagy- 
related genes, such as ATG5, ATG6 and ATG7. 
Table 1 summarizes preclinical studies supporting 
autophagy inhibition as an anticancer strategy. 
Notably, these inhibitions sensitized cancer cells to 
a wide range of therapeutic modalities, including 
genotoxic chemo- and radio-therapy, hormonal 
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Cancer type Treatment
Delayed cell death by autophagy inhibition

Reference
Early step Late step siRNA

Prostate cancer Phenethyl isothiocyanate 3‐MA ATG5 Bommareddy et al., 2009 
Fisetin CQ Beclin 1 Suh et al., 2010

Glioma Sodium selenite 3‐MA CQ ATG6, ATG7 Kim et al., 2007; Kim and Choi, 2008
Imatinib 3‐MA ATG5 Shingu et al., 2009
Cannabinoid 3‐MA HCQ,

E64+Pepstatin A
ATG1, ATG5, 

AMBRA1
Salazar et al., 2009

β‐Lapachone 3‐MA BFA ATG5, ATG6 Park et al., 2011
Lung cancer Elisidepsin (PM02734) 3‐MA ATG5 Ling et al., 2011
CML Resveratrol BFA ATG5, LC3, p62 Puissant et al., 2010 

Table 2. Preclinical studies supporting autophagy induction for cancer treatment

therapy and receptor tyrosine kinase inhibition 
(Chen et al., 2010). In this respect, the inhibition of 
autophagy appears to represent a major therapeutic 
means for sensitizing cells to various anti-cancer 
therapies. 

Autophagy as a pro-death mechanism: autophagic 
cell death

Under extreme stress, tumor cells with apoptosis- 
defective genetic backgrounds die via other 
mechanisms (Kondo and Kondo, 2006; Gozuacik 
and Kimchi, 2007). Sustained autophagic activation, 
which leads to turnover of proteins and organelles 
beyond a survival threshold, can kill some cancer 
cells with high apoptotic thresholds, thus enhancing 
treatment efficacy (Yang et al., 2011). In this case, 
therefore, cell death via autophagy could provide 
an alternative therapeutic strategy (Gozuacik and 
Kimchi, 2007; Eisenberg-Lerner et al., 2009). 
     However, the concept of “autophagic cell death”, 
also known as type II programmed cell death 
(Gozuacik and Kimchi, 2004), has been the subject 
of some controversy. It was initially regarded as a 
cell death mode that included the presence of 
autophagosomes (Schweichel and Merker, 1973). 
In many cases, however, autophagy is presumably 
activated by dying cells as part of an unsuccessful 
effort to cope with stress (i.e., as a pro-survival 
mechanism) (Boya et al., 2005). Increases in auto-
phagic markers (e.g., autophagosome accumulation 
and up-regulation of the LC3 II form) in dying cells 
following exposure to chemotherapy or molecular 
targeted therapeutics do not necessarily indicate 
increases in autophagic flux (Mizushima et al., 
2010). Instead, inefficient fusion between autopha-
gosomes and lysosomes or reduced lysosomal 
degradation might lead to massive accumulation of 
autophagosomes. In this case, inhibition of autophagy 
would accelerate cell death rather than preventing 

it (Boya et al., 2005). Since the term “autophagic 
cell death” is highly prone to misinterpretation from 
a purely morphological perspective, the Nomenclature 
Committee on Cell Death very recently suggested 
that the term should only be used to indicate a cell 
death that is mediated by autophagy, as assessed 
based on biochemical and functional considerations 
(Galluzzi et al., 2012). In other words, “autophagic 
cell death” should be a cell death mode that is 
suppressed by inhibition of autophagy by chemicals 
(e.g., 3-MA) and/or genetic means, such as gene 
knockout/mutation or RNAi targeting of essential 
autophagic modulators, such as AMBRA1, ATG5, 
ATG12 or Beclin 1 (Galluzzi et al., 2012). Recently, 
Shen and Codogno (2011) also defined “autophagic 
cell death” as a form of programmed cell death in 
which autophagy per se serves as a cell death 
mechanism, in that it is cell death by autophagy, 
not cell death with autophagy. They proposed that 
autophagic cell death should meet the following 
criteria: 1) the cell death occurs without apoptosis; 
2) there is an increase of the autophagic flux, not 
just the autophagic markers, in dying cells; and 3) 
suppression of autophagy via both pharmacological 
inhibitors and genetic approaches can rescue or 
prevent the cell death. Such autophagic cell death 
has been reported during the in vivo development 
of D. melanogaster (Berry and Baehrecke, 2007; 
Denton et al., 2009) and in hippocampal neural 
stem cells of adult rat brain following insulin 
withdrawal (Yu et al., 2008). However, the in vivo 
evidence of autophagic cell death in mammals has 
been relatively limited to date.

Targeting autophagy for cancer therapy

Induction of autophagy for cancer prevention

Various dietary phytochemicals, including β-carotene, 
lycopene, lutein, quercetin, resveratrol, curcumin and 
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epigallocatechin-3-gallate (EGCG) have demon-
strated chemopreventive activities in many preclinical 
and clinical studies (Davis 2007; Pan and Ho, 
2008). Their antioxidant, anti-inflammatory, and 
pro-apoptotic activities appear to be important for 
preventing, suppressing, or reversing the develop-
ment of carcinogenesis (Tan et al., 2011). Both in 
vitro and animal studies have demonstrated that a 
number of phytochemicals (curcumin, resveratrol, 
EGCG, sulforaphane and silibinin) show preferential 
cytotoxicity to malignant cancer cells over normal 
cells, suggesting that they might safely be used for 
both cancer chemoprevention and cancer therapy 
(Nair et al., 2007; Mann et al., 2009). Interestingly, 
a number of dietary phytochemicals, including 
quercetin, apigenin, genistein, hesperetin, and luteolin 
were recently shown to induce autophagy in both 
normal cells and several cancer cell types 
(Singletary and Milner, 2008; Hannigan and Gorski, 
2009). Furthermore, pharmacological activation of 
autophagy by drugs, such as rapamycin analogs 
(mTOR inhibitors, (Harrison et al., 2009)), class I 
PI3K inhibitors (Levine and Kroemer, 2008) and 
metformin (an AMPK activator, (Buzzai et al., 
2007)) were demonstrated to inhibit malignant 
transformation (Evans et al., 2005). The possibility 
of preventing cancer by activating autophagy is 
very intriguing. However, it is not yet clear whether 
the enhancement of autophagy is a potentially 
critical mechanism for the chemopreventive and/or 
chemotherapeutic actions of these agents. Future 
work will be required to determine whether the 
up-regulation of autophagy is a safe and effective 
approach for cancer prevention.

Inhibiting autophagy to enhance the efficacy of 
anticancer therapies

Despite recent advances in cancer treatment, many 
tumors still exhibit unsatisfactory responses to 
chemotherapy and/or radiation, either recurring or 
continuing to grow after treatment (Chen et al., 
2010). Autophagy is commonly up-regulated in both 
tumor and normal cells exposed to cancer therapies, 
but the greater reliance of tumor cells (versus 
normal cells) on the cytoprotective effects of 
autophagy provides a novel therapeutic opportunity 
(White and DiPaola, 2009). Indeed, autophagy is 
induced as a pro-survival strategy in human cancer 
cells treated with HDAC inhibitors (Carew et al., 
2007), arsenic trioxide (Smith et al., 2010), TNF-α 
(Moussay et al., 2011), IFN-γ (Ní Cheallaigh et al., 
2011), rapamycin (Fan et al., 2010), and anti- 
estrogen hormonal therapy (Qadir et al., 2008), 
suggesting that the inhibition of autophagy could 
sensitize cancer cells to these therapies. Consistent 

with this notion, siRNA-mediated suppression of 
ATG5, ATG6, or ATG7 as well as co-treatment with 
3-MA or bafilomycin A1 sensitized various cancer 
cells to various anti-cancer drugs or therapies 
(Chen et al., 2010). 
     CQ derivatives act as lysosomotropic agents by 
increasing pH and inhibiting autophagosomal 
maturation (White and DiPaola, 2009). These oral 
drugs cross the blood-brain barrier (Amaravadi et 
al., 2011) and have been prescribed for malaria 
(O’Neill et al., 1998), rheumatoid arthritis (Kremer, 
2001), and HIV (Romanelli et al., 2004), Recently, 
CQ and HCQ were shown to enhance the cytotoxic 
effects of chemotherapy or standard cancer 
therapy in vitro (Amaravadi et al., 2011). In addition, 
combined treatments with CQ or HCQ plus 
metabolic stressors (e.g., an angiogenesis inhibitor 
or 2-deoxyglucose) (Ramakrishnan et al., 2007; 
Dipaola et al., 2008) or targeted therapeutic drugs 
(e.g., imatinib, an inhibitor of Bcr-Abl) have been 
found to potentiate cell death (Shingu et al., 2009; 
Calabretta and Salomoni, 2011). HCQ is less toxic 
than CQ (Gunja et al., 2009) but has similar ability 
to induce autophagy (Amaravadi et al., 2011). 
Thus, multiple clinical trials are currently assessing 
the effects of combined treatments with various 
anti-cancer drugs plus HCQ for patients with various 
refractory malignancies (http://clinicaltrials.gov) 
(White and DiPaola, 2009; Levy and Thorburn, 
2011). Since the pharmacological modulation of 
autophagy appears to enhance the efficacy of 
current anticancer regimens, these new combinatorial 
strategies may hopefully contribute to cancer 
eradication in the future.

Induction of autophagic cell death as a therapeutic 
strategy

Since defects in apoptosis are often observed in 
many solid tumor cells and can increase the 
resistance of tumor cells to various conventional 
cancer therapies, the targeting of alternative cell 
death pathways is an attractive strategy for 
improving anti-tumor therapy (Schleicher et al., 2010). 
Thus, the induction of cell death by autophagy may 
serve as a novel therapeutic strategy for eliminating 
cancer cells, especially those with high thresholds 
to apoptosis (Gozuacik and Kimchi, 2007). 
Although several agents, including arsenic trioxide 
(Kanzawa et al., 2003) and vitamin D analog EB1089 
(Høyer-Hansen et al., 2005), were previously 
reported to induce autophagic cell death in cancer 
cells in vitro, in these cases, unfortunately, auto-
phagic cell death was often determined based on 
morphological characteristics, meaning that some 
may not represent true autophagic cell death 
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(Kroemer and Levine, 2008). However, several other 
reports, have demonstrated concrete examples of 
autophagic cell death in response to certain agents, 
further showing that the inhibition or knockdown of 
essential regulators of autophagy could prolong cell 
survival. Some cancer cells (especially those lacking 
essential apoptotic modulators, such as BAX, BAK 
or caspases) were found to show autophagic cell 
death in vitro when treated with certain chemothe-
rapeutic agents, such as etoposide, fenretinide and 
dexamethasone (Shimizu et al., 2004; Fazi et al., 
2008; Grander et al., 2009; Laane et al., 2009). 
Certain phytochemicals, including fisetin and 
resveratrol, have also been shown to induce 
autophagic cell death in certain types of cancer 
cells (Puissant et al., 2010; Suh et al., 2010). 
Furthermore, we recently reported that sodium 
selenite induces mitophagic cell death (cell death 
by excessive mitophagy) selectively in malignant 
glioma cells, but not in normal astrocytes (Kim et 
al., 2007; Kim and Choi, 2008), suggesting that 
selenite may prove useful for cancer therapy via a 
mitochondria-selective type of autophagic cell 
death. Table 2 lists other examples of autophagic 
cell death in cancer cells. Autophagic cell death 
seems to be induced in a cell type-, genetic 
background-, and stimulus-specific manner. Future 
studies will be needed to clarify whether the 
induction of autophagic cancer cell death will prove 
useful in the clinic. 

Remaining tasks 

Requirement for a novel and reliable method for 
measuring dynamic autophagic processes

Our current understanding of autophagy is undoub-
tedly incomplete. While we have a fairly good 
understanding of the regulatory mechanisms 
governing the early steps of autophagy, including 
autophagosome formation (initiation, nucleation and 
elongation) (Mizushima and Yoshimori, 2007), those 
governing the later steps of autophagy, such as 
autophagosomal maturation and lysosomal degra-
dation, are less well understood. The widely used 
LC3-based autophagic assay primarily measures 
the early phases of autophagic activity, which 
control autophagosome formation (Kabeya et al., 
2000). Recently, several different assays have 
been used to monitor autophagic flux, including the 
LC3 turnover assay, measurements of the total 
levels of autophagic substrates (e.g., LC3, p62 and 
GFP-LC3) (Mizushima and Yoshimori, 2007), 
analysis of the mRFP-GFP-LC3 color change 
(Kimura et al., 2007), and measurement of free 
GFP generated from GFP-LC3 (Hosokawa et al., 

2006). However, the utilities and limitations of 
these assays may vary somewhat in different cell 
types and experimental contexts (Mizushima et al., 
2010). For us to clearly understand the entire 
dynamic process of autophagy and identify 
therapeutic targets for its modulation, we need to 
develop new assays that can be used to examine 
autophagic activity all the way to the final lysosomal 
step. In addition, it would be useful to quantitatively 
measure activity changes among key autophagic 
effectors, and we should seek to generate standard 
autophagic assays suitable for routine clinical use. 
Currently, there are no available data on auto-
phagic markers in biopsies obtained before and 
after treatment, which further indicates that we 
need new techniques for assessing autophagy in 
clinical samples, such as tumor biopsies and 
peripheral-blood mononuclear cells. 

Rational therapeutic design based on the functional 
status of autophagy in cancer cells

Although only some of the links between autophagy 
and cancer have been elucidated in detail, 
pharmacological modulation of autophagy based 
on its functional status in tumors may provide novel 
opportunities for cancer management. However, 
the complex roles of autophagy in tumorigenesis 
and treatment responses make it difficult to 
decipher how we should modulate autophagy for 
maximum therapeutic benefit, given that context- 
and cell type-specific approaches may be required. 
Chronically autophagy-deficient tumors may be 
particularly sensitive to genotoxic and/or metabolic 
stress-inducing anticancer agents, such as DNA- 
damaging and anti-angiogenic drugs, due to the 
absence of autophagy-mediated survival mechanism 
(Chen and Karantza, 2011). In autophagy-competent 
tumors, concurrent autophagic inhibition would be 
expected to increase the efficacy of many anti- 
cancer modalities (Amaravadi et al., 2011). However, 
in autophagy-competent tumor cells with particular 
genetic backgrounds (for example, those having 
high thresholds of apoptosis), sustained or over- 
stimulation of autophagy can lead to cell death, 
and enhanced treatment efficacy (Buytaert et al., 
2006; Yang et al., 2011). Therefore, gaining detailed 
information on the cellular functional status of 
autophagy (together with apoptosis) in certain 
cancer types may facilitate the rational design of 
therapeutic regimens via the modulation of autophagy 
(Table 3). Context-specific pharmacological mo-
dulation of autophagy thus holds great promise as 
a novel therapeutic approach against cancer. 
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Cell types
Functional status

Therapeutic strategy modulating autophagy 
Autophagy Apoptosis

Normal + + Activation of autophagy
Cancer I + + Induction of apoptosis via inhibition of autophagy

II + - Induction of autophagic cell death via over‐stimulation of autophagy 
III - + Induction of apoptosis using genotoxic and/or metabolic stress‐inducing anti‐cancer 

agents
IV - - Induction of non‐apoptotic cell death using genotoxic and/or metabolic stress‐inducing 

anti‐cancer agents
+: functional, -: defective 

Table 3. Proposed anti‐cancer therapeutic strategy modulating autophagy

Establishment of effective combinatorial therapeutic 
strategies using inhibitors of autophagy

Several agents that were previously identified as 
inducers of autophagy (mainly by LC3-based auto-
phagic assays), including thapsigargin (Høyer- 
Hansen et al., 2007) and imatinib (Ertmer et al., 
2007), were recently reported to inhibit the lysosomal 
steps (autophagosomal-lysosomal fusion or lysosomal 
degradation) in different experimental settings 
(Yogalingam and Pendergast, 2008; Ganley et al., 
2011). Inhibitors of autophagy (e.g., HCQ) are 
already being used in clinical trials along with 
various chemotherapeutic agents. Thus, when 
seeking to modulate autophagy in order to increase 
treatment efficacy, we should first evaluate whether 
the potentially co-treated anti-cancer drug increases 
or inhibits the autophagic flux in the target cancers.
     The abrogation of autophagy often tends to 
sensitize therapeutic agent-resistant cancer cells to 
various anti-cancer treatments (Chen et al., 2010). 
Notably, however, blocking autophagy at different 
steps (i.e., inhibiting the autophagosome-formation 
step with 3-MA versus inhibiting the autophago-
some-lysosome fusion step with CQ or HCQ) can 
have different or even opposing outcomes. Temo-
zolomide- or imatinib-induced cytotoxicity was 
attenuated by the inhibition of autophagy at an 
early stage, but augmented by inhibition of autophagy 
at a late stage (Kanzawa et al., 2004; Shingu et al., 
2009). At present, we do not clearly understand 
how the inhibition of autophagy stage-specifically 
affects cytotoxicity. Comparative studies on the 
effects of various combined therapies with agents 
that inhibit different autophagic stages may contribute 
to the rational design of combined regimens against 
cancer. 
     Although autophagic manipulation by inhibitors 
such as CQ and HCQ is already being used in 
clinical trials, these agents are known to have 
additional effects, such as immunomodulation and 
the possible induction of DNA damage at higher 

doses (Chen and Karantza, 2011). Thus, the side- 
effects of these autophagic inhibitors (e.g., potential 
induction of genomic instability, and adverse effect 
on the central nervous and cardiovascular systems) 
may make them suitable for only certain clinical 
situations. Furthermore, when we target the auto-
phagic system for anti-cancer efforts, we must 
carefully consider the multifaceted nature of auto-
phagy and its diverse crosstalk with other biological 
processes, including metabolism and the cell death 
pathways. 

Conclusion

The molecular mechanisms underlying the regulation 
of autophagy and the role of autophagy in cancer 
cells are not completely understood. However, the 
pharmacological modulation of autophagy appears 
to have significant clinical potential as a novel 
therapeutic strategy for cancer eradication. The 
induction of autophagy may be useful for cancer 
chemoprevention in normal cells or triggering an 
alternative cell death mechanism in certain cancer 
cells, especially those with compromised apoptotic 
functions. In addition, suppression of the autophagic 
pathway may be combined with conventional 
antitumor regimens to achieve increased efficacy, 
representing a valuable therapeutic strategy for 
radio- and chemosensitization. In the future, we 
should seek to identify novel biomarkers for 
assessing dynamic autophagic processes and to 
establish new methods to assess autophagy in 
clinical samples. These efforts will help us understand 
the complicated role of autophagy in cancer and 
facilitate the rational design of combinatorial 
strategies aimed at modulating autophagy. Further-
more, future efforts toward universally modulating 
autophagy for maximum therapeutic benefit should 
focus on elucidating the genetic and physiological 
conditions that determine the pro-survival or pro- 
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death functions of autophagy. 
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