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Abstract

CREB mediates the transcriptional effects of glucose and incretin hormones in insulin-target cells and insulin-producing b-
cells. Although the inhibition of CREB activity is known to decrease the b-cell mass, it is still unknown what factors inversely
alter the CREB signaling pathway in b-cells. Here, we show that b-cell dysfunctions occurring in chronic hyperglycemia are
not caused by simple inhibition of CREB activity but rather by the persistent activation of CREB due to decreases in protein
phophatase PP2A. When freshly isolated rat pancreatic islets were chronically exposed to 25 mM (high) glucose, the PP2A
activity was reduced with a concomitant increase in active pCREB. Brief challenges with 15 mM glucose or 30 mM forskolin
after 2 hour fasting further increased the level of pCREB and consequently induced the persistent expression of ICER. The
excessively produced ICER was sufficient to repress the transcription of NeuroD, insulin, and SUR1 genes. In contrast, when
islets were grown in 5 mM (low) glucose, CREB was transiently activated in response to glucose or forskolin stimuli. Thus,
ICER expression was transient and insufficient to repress those target genes. Importantly, overexpression of PP2A reversed
the adverse effects of chronic hyperglycemia and successfully restored the transient activation of CREB and ICER.
Conversely, depletion of PP2A with siRNA was sufficient to disrupt the negative feedback regulation of CREB and induce
hyperglycemic phenotypes even under low glucose conditions. Our findings suggest that the failure of the negative
feedback regulation of CREB is the primary cause for b-cell dysfunctions under conditions of pathogenic hyperglycemia, and
PP2A can be a novel target for future therapies aiming to protect b-cells mass in the late transitional phase of non-insulin
dependent type 2 diabetes (NIDDM).

Citation: Cho I-S, Jung M, Kwon K-S, Moon E, Cho J-H, et al. (2012) Deregulation of CREB Signaling Pathway Induced by Chronic Hyperglycemia Downregulates
NeuroD Transcription. PLoS ONE 7(4): e34860. doi:10.1371/journal.pone.0034860

Editor: Francis C. Lynn, University of British Columbia, Canada

Received July 26, 2011; Accepted March 8, 2012; Published April 3, 2012

Copyright: � 2012 Cho et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research was supported by a grant (2011K000262) to HSK from Brain Research Center of the 21st Century Frontier Research Program and a grant
(2011-0019435) from National Research Foundation (NRF) funded by the Ministry of Education, Science and Technology, the Republic of Korea. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hysuh@ajou.ac.kr (HS-K); kimdmg@ajou.ac.kr (S-SK)

Introduction

Glucose has a critical influence on b-cell functions and mass.

Transient increases in glucose concentration within the physio-

logical range promote insulin biosynthesis and secretion. Chronic

elevation of glucose level, however, exerts adverse effects on b-cells

and leads to decreases in b-cell survival and b-cell-enriched gene

expression; the phenomenon is termed ‘‘glucotoxicity’’. Thus,

preservation of b-cell mass against glucotoxicity has become a

major point of research in type 2 diabetes. Extensive studies have

revealed that chronic hyperglycemic environment imposes various

types of stress on b-cells including oxidative stress, endoplasmic

reticulum stress, cytokine-induced apoptosis, and hypoxia [1].

However, it is not yet clear how those stress progressively leads to

defects in insulin gene synthesis/secretion, and the loss of

functional b-cell mass.

Insulin gene expression is regulated by the combined actions

of b-cell-specific transcription factors that are also required for

the development and survival of pancreatic islet cells. These

factors include Pdx-1/IPF-1, Pax4, Pax6, NeuroD/BETA2,

Nkx2.2, and MafA [2,3]. In particular, NeuroD/BETA2, a

basic helix-loop-helix transcription factor, directly regulates

insulin gene transcription [4], also regulates b-cell-specific genes

that are necessary for glucose homeostasis such as sulfonylurea

receptor I (SUR1) [5]. NeuroD-deficient mice die at early ages

due to severe diabetes [6], or if they survive to adulthood in a

different genetic background, b-cells remain immature and lose

functional glucose-responsiveness [7]. Transduction of the

NeuroD protein can alleviate diabetic symptoms in a type 1

diabetic mouse model [8]. In humans, mutations in NeuroD can

predispose individuals to develop maturity onset diabetes of the

young (MODY) [9]. Given a critical role of NeuroD in the

developing pancreatic islet cells and in mature b-cells, efforts
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toward functional conservation of the NeuroD gene may

effectively treat diabetes mellitus.

cAMP response element binding protein (CREB) is known to

play a key role in maintaining glucose homeostasis by mediating

the transcriptional effects of glucose and incretin hormones [10].

The functions of CREB have been mostly characterized in

association with its cofactor, CRTC2, in the process of fasting-

associated gluconeogenesis in insulin-target tissues such as liver

and skeletal muscle [11]. By comparison, the roles of CREB in

insulin producing b-cells are relatively unknown except that

inhibition of CREB in transgenic mice with a dominant negative

A-CREB causes severe hyperglycemia due to the loss of b-cell

mass [12]. Although those data indicate that CREB is important

for preservation of functional b-cell mass, it is still unknown

what factors inversely alter the CREB signaling pathway in b-

cells.

CREB is activated by phosphorylation at Ser133 in response to

increases in intracellular levels of Ca2+ or cAMP but deactivated

by dephosphorylation of Ser133 by Ser/Thr protein phosphatases,

including PP1, PP2A, and PP2B/calcineurin [10,13]. These

phosphatases play diverse roles in various cell types, including b-

cells [14]. Clinical and ethnographical studies with Pima Indians

also have suggested that defects in PP1 and PP2A are associated

with diabetes [15–18]. Sato et al., 1998 [19] have showed that

okadaic acid, a universal inhibitor of Ser/Thr phosphatases,

inhibits insulin secretion by disrupting Ca2+ signaling. Depletion of

PP2A catalytic subunits using small interfering RNA markedly

attenuates glucose-stimulated insulin secretion from pancreatic b-

cells [20]. Given that Ser/Thr protein phosphatases have broad

substrate specificity, it is predictable that their modulation may

affect glucose homeostasis in similar ways. However, mice either

lacking or overexpressing PP2B/calcineurin in b-cells ironically

display similar diabetic symptoms [21,22], while PP2A null mice

are embryonically lethal [23]. Thus, the precise functions of

protein phosphatases are yet to be determined with respect to b-

cell functions or diabetes.

CREB signals can be terminated via a negative feedback control

by ICER (inducible cAMP early repressor) [24]. ICER mRNA is

generated from the CRE-containing intronic P2 promoter of the

cAMP response element modulator (CREM) gene, a closely

related in structure to CREB, in response to accumulation of

active pCREB. ICER proteins dimerize with CREB or CREM

activators, and the dimers, in turn, switch off CRE-mediated gene

expression including ICER itself. In b-cells, insulin is known as a

direct target of ICER [25]. ICER expression is elevated in

hyperglycemic rodent islets [26–28]. Transgenic mice overex-

pressing ICER in pancreatic b-cells exhibit severe diabetic

symptoms at early ages because of a decrease in b-cell mass

[29]. Because insulin deficiency cannot fully ascribe for the loss of

b-cell mass at early ages, other factors that regulate differentiation

and survival of b-cells may be involved.

In the present study, using freshly isolated rat islet cells as an ex

vivo system that allows molecular-level studies under physiological

and pathophysiological conditions (normoglycemica versus hyper-

glycemia), we show that the decreased level of PP2A levels and the

consequent upregulation of ICER is the primary cause for the

failure of the negative feedback regulation of CREB under chronic

hyperglycemic conditions. We also show that the deregulation of

CREB signaling pathway is a key mechanism for silencing of b-cell

specific genes such as NeuroD and insulin in the progression of b-

cell failure as a complication of diabetes.

Results

Chronic exposure to high glucose prolongs ICER
expression in hyperglycemic islets

To establish a cellular glucotoxicity model, rat pancreatic islets

were freshly isolated and grown in RPMI medium containing

30 mM (high level) or 5 mM (low level) glucose for 8 days

(Figure 1A). To validate 8-day cultivation in 30 mM glucose could

mimic chronic hyperglycemia in vivo, we tested insulin secretion

capability. In low glucose conditions, the islets retained the original

aggregated morphology (Figure 1B) as well as the capability to

secrete insulin in response to acute challenges with 15 mM glucose

following 2 h-fasting in 5 mM glucose (Figure 1C). In contrast, 8-

day cultivation in the presence of 30 mM glucose blunted glucose-

stimulated insulin secretion. Concomitantly, the total insulin

content in the islets was also reduced after 8-day cultivation in

30 mM glucose (Figure 1C). Decrease in insulin secretion and

insulin content are the indication of glucotoxicity found in chronic

hyperglycemia [1]. Hence, the experimental condition described

in Figure 1A provides a proper cellular glucotoxicity model for the

analysis of impaired b-cell specific gene expression. The total RNA

was isolated from each of 30 islets and the expression levels of b-

cell specific genes were quantitated using SYBR green real-time

PCR (Supporting Table S1). When islets were cultivated in the

presence of 5 mM glucose, acute stimulus with 15 mM glucose

slightly increased the mRNA levels of NeuroD and SUR1 within

6 hours whereas the insulin transcription was not altered

(Figure 1E–1G). Importantly, ICER expression was transiently

increased by 3.8-fold at 2 h but fell to the basal level at 6 h

(Figure 1D). In contrast, when islets were cultivated in the

presence of 30 mM glucose, the insulin transcription was reduced

by 58% (Figure 1G). Concomitantly, the mRNA levels of NeuroD,

SUR1, and insulin were reduced by 86%, 72%, and 81% after

6 hour challenge with 15 mM glucose, respectively (Figure 1E–

1G). Importantly, the mRNA level of ICER was persistently

elevated in 30 mM glucose and further increased by 15 mM

glucose stimulus up to 9.3 folds for 6 hours (Figure 1D).

Meanwhile, the mRNA level of Pdx-1 was not altered in any

instance (Figure 1H), consistent with the notion that the regulation

of Pdx-1 mainly takes place at the post-transcriptional level [30–

32]. The results also suggest that the reduced intracellular insulin

content in chronic hyperglycemia (Figure 1C) are partially due to

the decrease in insulin gene transcription (Figure 1G). Traditional,

semi-quantitative RT-PCR data performed with HIT cells were

also similar to those obtained with SYBR green real-time PCR

(Supporting Figure S1). Taken together, these results suggest that

chronic exposure to hyperglycemia prolongs the ICER induction.

The inverse correlation of ICER with NeuroD, SUR1 and insulin

also suggest that these genes may be directly or indirectly regulated

by ICER.

Excessive activation of CREB prolongs ICER induction
Since ICER is known to be induced by excessive activation of

the cAMP-CREB pathway [24], chronic hyperglycemia may also

alter the b-cell specific gene expression in response to hormones

that increase the intracellular cAMP levels. To mimic hormonal

effects, we added 30 mM forskolin, an activator of adenylyl cyclase,

to islet cultures that were maintained in 5 mM or 30 mM glucose

for 8 days (Figure 2A). The responsiveness to cAMP was

maintained in islet cells cultured in low glucose conditions for 8

days, thus the levels of NeuroD, SUR1, and insulin mRNA were

increased for 6–12 h after forskolin treatment (Figure 2C–2E).

Importantly, ICER was transiently induced only for 6 h and the

ICER level dropped to the basal level at 12 h (Figure 2B). In

ICER-Mediated NeuroD Repression in Hyperglycemia
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Figure 1. Chronic hyperglycemia alters the b-cell specific gene expression in pancreatic islets. (A) Rat islet cells were cultured in the
presence of 5 mM or 30 mM glucose for 8 days, and stimulated with 15 mM glucose for 0–6 h after 2 h preconditioning in 5 mM glucose. (B)
Dithizone staining of islet cells after 8 days of culture. Scale bar: 100 mm. (C) In low (5 mM) glucose condition, insulin secretion was normal in

ICER-Mediated NeuroD Repression in Hyperglycemia
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contrast, after 8-day culture in high glucose conditions, an acute

treatment with forskolin increased the ICER transcription for an

extended period of time up to 12 h. Under the same condition, the

mRNA levels of NeuroD, SUR1, and insulin were reduced by

forskolin (Figure 2C–2E). As expected, the transcription of Pdx-1

was not altered (Figure 2F). The results suggest that the impaired

gene expression of b-cell specific genes in response to glucose or

forskolin (or cAMP) after chronic exposure to hyperglycemia may

involve common signaling pathways.

To understand the molecular mechanisms underlying the

distinctive responsiveness to glucose or hormonal stimuli after

long-term culture in high and low glucose, we sought for another

in vitro culture system that could recapitulate the long-term effects

of glucose as found in pancreatic islet cells while allowing us to

manipulate gene expression. HIT insulinoma cells were grown in

DMEM containing 5.5 mM (low) and 25 mM (high) glucose. As

traditional, semi-quantitative RT-PCR and real-time PCR with

SYBR green yielded qualitatively similar results in islet cells

(compare Figures 1 and 2 with Supporting Figures S1 and S2),

traditional RT-PCR analysis was carried out to investigate the

impaired gene expression. In HIT cells, the responsiveness to

cAMP was impaired as found in rat islet cells grown in high

glucose (Figure 2 and 3). Thus, forskolin prolonged the ICER

induction for longer than 6 h and concomitantly suppressed the

level of NeuroD, SUR1, and insulin transcription by 77%, 54%,

and 72%, respectively (Figure 3). In contrast, in HIT cells grown in

the presence of 5.5 mM (low) glucose, ICER was transiently

induced only for 1 h after forskolin treatment but immediately fell

to the basal level thereafter. Meanwhile, the expression of

NeuroD, insulin, or SUR1 was not affected. The data consistently

suggest that persistent induction of ICER is the primary cause for

the repression of NeuroD, SUR1, and insulin. The results also

indicate that HIT cells can serve as a physiologically relevant in

vitro system for analyzing the effects of chronic hyperglycemia on

ICER-mediated repression of b-cell-specific genes. As NeuroD is a

known transcriptional regulator of SUR1 and insulin, we

hypothesized that NeuroD might be a direct target of ICER.

NeuroD is a target gene of ICER
The mouse NeuroD gene [33] contains a TATA box in the

proximal promoter and two putative canonical CRE-like sequenc-

es (TCAGCTC/A
A/G) at 21001 bp and 273 bp, with reference

to the transcription initiation site (Figure 4A). Only the CRE-like

sequence at 273 bp is highly conserved among humans, primates,

and rodents (Supporting Table S2), suggesting the retention of

functional significance throughout evolution.

To determine whether the CRE-like sequence at 273 bp

functions as a binding site for ICER, we performed assays with

reporter genes driven by the full length, pGL3-NeuroD(22.2 kb),

and minimum promoter, pGL3-NeuroD(2100 bp) (Figure 4B).

The 2.2 kb fragment upstream from the transcriptional startpoint

is known to be sufficient to direct b-cell-specific expression of

NeuroD [34], whereas the 100 bp fragment contains minimal

promoter with TATA box and a putative CRE sequence.

Overexpression of CREB enhanced the promoter activities of

pGL3-NeuroD(22.2 kb) and pGL3-NeuroD(2100 bp) by

4.1,6.9-fold in HIT cells (Figure 4C). Importantly, both the

basal and CREB-stimulated activity of reporter genes with wild

type CRE were downregulated by forskolin treatment (Figure 4C).

Overexpression of ICER Ic repressed the both reporter genes in a

dose-dependent manner (Figure 4D) whereas overexpression of

CREMta, a constitutively active form of CREM that has a higher

affinity for CRE sequences than CREB [25,35], attenuated the

negative effects of ICER by competing with ICER for binding to

the CRE sequence (Figure 4E). In any cases, a mutation of the

CRE sequence (mCRE) abolished the effects of CREB, CREMta,

ICER Ic, or forskolin, verifying the idea that the TCAGCTCA

sequence at 273 bp is a functional CRE. Direct binding of ICER

to the CRE at the 273 bp position was clearly proven by

chromatin immunoprecipitation (ChIP) assays performed with an

anti-ICER antibody (Figure 4F). Under low glucose conditions,

the amount of the ICER-specific product was minor and not

increased by forskolin. In contrast, the basal intensity of ChIP

product was slightly elevated under high glucose conditions and

further increased by 2.3-fold at 6 h after the forskolin treatment.

These data collectively suggest that chronic exposure to supra-

physiologic glucose concentrations destroys the negative feedback

regulation of the CREB-ICER pathway and the excessively

produced ICER proteins silence the NeuroD promoter by binding

to the CRE.

Deregulation of CREB signaling by reduced PP2A in
chronic hyperglycemia

ICER expression can be terminated by deactivation of pCREB

which otherwise binds to a CRE site in the ICER promoter, and

by autologous negative feedback by its own product [24]. Thus,

persistent induction of ICER in chronic hyperglycemia suggests

that pCREB deactivation does not occur and consequently the

pCREB level is constantly elevated. Indeed, western blot analysis

indicated that pCREB expression under low glucose conditions

was minimal and transiently increased by 1.4-fold only for 30 min

after forskolin treatment (Figure 5). By comparison, the basal

pCREB level was elevated by 1.4-fold under high glucose

conditions, and further increased by forskolin. The elevation of

pCREB level longer than 3 h was sufficient to support the

persistent ICER induction for an extended period of time.

To estimate the deactivation pathway of pCREB, we firstly

identified Ser/Thr protein phosphatases responsible for dephos-

phorylation of CREB Ser133 by RT-PCR analysis of protein

phosphatases that were previously found in b-cells [14]. Among

the catalytic subunit of PP1, PP2A, and PP2B/calcineurin, we

found that only the PP2A expression was downregulated more

than 50% in pancreatic islets after chronic exposure to high

glucose (Figure 6A and 6B). Under the same condition, PP1 or

PP2B/calcineurin was not affected at all. Similarly, the protein

levels of PP1a and calcineurin/PP2Ba were not reduced in HIT

cells (Figure 6C) under the condition that the PP2A protein level

was decreased (Figure 6D). The data indicate that PP2A is the

major protein phosphatase that is downregulated by chronic

response to acute stimulation with 15 mM glucose after 8 day culture whereas insulin secretion was impaired after 8-day exposure to high (30 mM)
glucose. Under high glucose conditions, cellular insulin content were significantly reduced, and total proteins were decreased slightly. (D,H) Real-
time PCR was carried out using SYBR green to quantitate the mRNA levels of indicated genes in diverse conditions shown in A. Relative mRNA levels
were estimated from of Ct values summarized in Supporting Table S1 using 22DDCt method. The data from three independent experiments are
presented as average fold ratios (means 6 S.E.) of relative mRNA expression compare with the 5 mM glucose-cultured islets before glucose
stimulation. Simultaneous decreases in the mRNA levels and the intracellular insulin content correlated well. Significant effects of 15 mM glucose
(*, P,0.05; **, P,0.01) or 8-day incubation in 30 mM glucose (#, P,0.05) are marked. Similar results were obtained with traditional, semi-quantitative
methods (Supporting Figure S1).
doi:10.1371/journal.pone.0034860.g001

ICER-Mediated NeuroD Repression in Hyperglycemia
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hyperglycemia in pancreatic islet cells. Consistently, the enzyme

activity of PP2A was also decreased after chronic exposure to high

glucose (Figure 6E), being consistent with the persistent elevation

of pCREB or ICER expression. Thus, moderate overexpression of

the PP2A Ca (0.05–0.1 mg) negated the inhibitory effects of

forskolin and restored the CREB-mediated induction of the

NeuroD promoter to the value in the absence of forskolin

(Figure 6F). By comparison, excessive expression of PP2A Ca
(0.15 mg) lowered the CREB-mediated induction of the NeuroD

probably by abrogating even the beneficial effect of pCREB

(Figure 6F). When HIT cells were grown in 5.5 mM glucose, acute

challenges with 15 mM glucose or 30 mM forskolin did not

significantly alter the levels of PP2A Ca mRNA, protein, and

enzyme activity for 6 h. The results collectively suggest that the

PP2A activity predisposed by long-term culture (low versus high

glucose conditions) is a determinant for the basal pCREB level and

the subsequent duration of ICER induction (transient versus

persistent) in response to acute stimulation with glucose or

forskolin.

Reduced activity of PP2A is the primary cause of
impaired gene expression

We hypothesized that simple depletion of PP2A under low

glucose conditions would mimic hyperglycemic condition and

evoke responses of chronic hyperglycemia by forskolin treatment.

Figure 2. Chronic hyperglycemia alters the responsiveness to cAMP in pancreatic islets. (A) Rat islet cells were cultured in the presence of
5 mM or 30 mM glucose for 8 days and stimulated with 30 mM forskolin for 0–12 h after 2 h preconditioning in 5 mM glucose. (B,F) Real-time PCR
was carried out using SYBR green to quantitate the mRNA levels of indicated genes in diverse conditions shown in A. Relative mRNA levels were
estimated from Ct values summarized in Supporting Table S1 using 22DDCt method. The data from three independent experiments are presented as
average fold ratios of relative mRNA expression compare with the 5 mM glucose-cultured islets before forskolin treatment in 5 mM glucose-cultured
islets. Significant effects of forskolin (*, P,0.05; **, P,0.01) or 8-day incubation in 30 mM glucose (#, P,0.05) are marked.
doi:10.1371/journal.pone.0034860.g002
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The siRNA was designed to target PP2A Ca that is highly

conserved among species [36] including hamster-derived HIT cells

(Supporting Figure S3). Depletion of PP2A Ca was verified by

RT-PCR and western analysis (Figure 7A). In HIT cells

transfected with PP2A Ca-specific siRNA, pCREB level was

persistently enhanced in the presence of 5.5 mM glucose

regardless of forskolin treatment (Figure 7B). Concomitantly,

ICER was persistently expressed while expressions of NeuroD,

SUR1, and insulin were repressed (Figure 7C and 7D). In contrast,

stable expression of PP2A Ca prevented the excessive production

of ICER and thus, the expression of NeuroD, SUR1, and insulin

remained unaffected by forskolin treatment even after long-term

culture in 25 mM glucose (Figure 7E and 7F). The results

collectively indicate that PP2A is an important player that

determines the basal pCREB level and the duration of ICER

induction in response to various glucose concentrations, conse-

quently influencing the expression of b-cell-specific genes.

Discussion

Over the years, knowledge on the mechanisms underlying

chronic hyperglycemia-induced glucotoxicity has expanded rap-

idly, and several candidate components possibly associated with

pathogenesis in pancreatic b-cells have been identified. Here, we

describe a novel function of PP2A; the phosphatase switches the

stimulatory signals of glucose or cAMP to a repressive mode

during the pathogenic progress culminating in b-cell dysfunction

and failure.

Under normoglycemic conditions, acute elevation of extracel-

lular glucose and intracellular cAMP levels stimulate NeuroD

expression, whereas the same stimuli are interpreted as repressive

signals under hyperglycemic conditions (Figure 1E and 2C). This

divergent response is determined by the tonic level of pCREB and

the continuance of ICER expression. In the absence of a

deactivation pathway operated by PP2A under chronic hypergly-

cemia, CREB remains constantly activated, and further stimula-

tion by glucose or forskolin above a physiological threshold

prolongs the expression of a negative regulator ICER. Excessive

production of ICER proteins in turn leads to repression of the

NeuroD promoter. As insulin transcription is negatively regulated

by ICER [25] and positively by NeuroD [4] the insulin synthesis/

expression can be influenced directly by ICER [25] and indirectly

through ICER-mediated NeuroD silencing (Figure 8).

As mentioned above, NeuroD is essential for the normal

development, functional maturation of pancreatic b-cells, and

maintenance of pancreatic b-cell physiology [37,38]. NeuroD

regulates the expression of other factors critical in glucose sensing

and insulin exocytosis. These proteins include glucokinase

(hexokinase IV), a rate-limiting enzyme of glucose metabolism

[39]; the islet-specific glucose-6-phosphatase catalytic subunit-

related protein [40]; secretin [41]; Pax6 [42]; SUR1, the

regulatory subunit of the ATP-sensitive K+ channel [5]; SNAP25;

syntaxin1A [43]; piccolo; and Noc2 [7]. Therefore, downregula-

tion of NeuroD in chronic hyperglycemia may not only decrease

insulin transcription but also attenuate insulin secretion [43] by

affecting the glucose sensing and insulin exocytosis machinery.

Taken together, ICER-mediated repression of NeuroD synthesis

under hyperglycemic conditions may be a critical pathogenic

process leading to the impaired insulin depletion, secretion

(Figure 8).

In experiments performed under high glucose conditions, the

CREs of ICER and NeuroD consistently responded to glucose or

cAMP signals in the opposite ways such that ICER was

upregulated while NeuroD was repressed both in islets and HIT

cells (Figures 1–3). The opposite responses of CREs are possibly

attributable to the several facts. First, the CRE of the ICER gene is

activated by the active pCREB in the early phase after forskolin

stimulus, whereas the CRE of NeuroD is influenced by the ratio of

repressors to activators (ICER:pCREB or ICER:CREM) in the

late phase [44]. The ICER:CREM ratio is similarly shown to be a

key regulator for homeostatic expression of pineal hormones such

as melatonin in accordance with circadian rhythm in neuroendo-

crine cells [45,46]. Second, diverse flanking sequences around

CREs may display differential affinities for ICER, CREB, and

CREM [25,47]. Finally, the contribution of CREB signals to the

NeuroD gene may be less than that of ICER, because NeuroD

transcription is cooperatively regulated by several factors,

including Ngn3 [34] and CREB (Figure 4), whereas ICER is

solely regulated by CREB.

Ser/Thr protein phosphatases share substrates but differ in

terms of metal ion requirement. Specifically, PP2A does not

contain metal ions, whereas PP2B/calcineurin requires Ca2+ ions

Figure 3. cAMP exerts similar effects in HIT cells after chronic
exposure to hyperglycemia. (A) HIT cells were grown in 5.5 mM (left
panels) or 25 mM glucose (right panels) and treated with 30 mM
forskolin for the indicated time. Semi-quantitative RT-PCR analysis
revealed a transient (in 5.5 mM glucose) or a persistent (in 25 mM
glucose) induction of two isoforms of ICER. (B) The mRNA level of each
gene was normalized to that of GAPDH. Data from three independent
experiments are presented as fold ratios with respect to the value
obtained with 5.5 mM glucose in the absence of forskolin. Significant
effects of forskolin (*, P,0.05; **, P,0.01) or chronic 25 mM glucose
(#, P,0.05; ##, P,0.01) are marked.
doi:10.1371/journal.pone.0034860.g003

ICER-Mediated NeuroD Repression in Hyperglycemia
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Figure 4. ICER binds to a novel CRE sequence in the proximal NeuroD promoter. (A) Comparison of the proximal promoters of mouse
(gi:3641530) and human (gi:7416051) NeuroD. The mouse TATA box (NNNN) at 230 bp and a potential CRE site (****) at 273 bp from the
transcription initiation site (the arrow) are conserved. (B) A schematic model of reporter genes with 2100 bp or 22.2 kb fragment of NeuroD
promoter. Sequences for a putative wild type CRE and mutated (mCRE) are shown. (C) Reporter genes with the wild type CRE or mCRE (0.4 mg) were
cotransfected with the CREB expression vector (0.15 mg) into HIT cells grown in 25 mM glucose. Forskolin (30 mM) was added for the indicated time
before harvesting. The average luciferase activity from three independent experiments was shown as the fold ratio with respect to the basal activity
of the reporter gene without CREB overexpression and forskolin. (*, P,0.05; **, P,0.01). (D) ICER Ic directly repressed in a dose dependent manner
the NeuroD reporter genes (0.4 mg) only with the wild type CRE but not with a mCRE in HIT cells grown in 5.5 mM glucose. (E) HIT cells grown in
5.5 mM glucose were cotransfected with NeuroD reporter genes (0.4 mg) and expression vectors for CREM ta (0.4 mg) and/or ICER Ic (0.1 mg). The
relative luciferase activity from three independent experiments is presented as the fold ratio with respect to the value of indicated conditions. (F)
ChIP assays were performed to detect direct binding of endogenous ICER to the NeuroD CRE sequence at 273 bp using HIT cells grown in 5.5 mM or
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for optimal activity [48]. In the present study, we showed that

PP2A is the key regulator that keeps the pCREB level below the

physiological threshold under normoglycemic conditions. Howev-

er, we cannot exclude the possibility that other Ser/Thr

phosphatases, such as PP1 and PP2B/calcineurin, also play roles

in pancreatic islets or b-cells. Indeed, several lines of evidence

suggest associations of PP1, PP2A, and PP2B/calcineurin

expression levels with diabetes in human patients. As mentioned

above, earlier ethnographic studies have found that defective PP1

is a risk factor for non-insulin dependent diabetes mellitus

(NIDDM) in Pima Indians of the southwest United States [18].

Clinical studies further have revealed that both PP1 and PP2A are

decreased in the skeletal muscle of patients with NIDDM [15–17].

Depletion of the PP2A catalytic subunit markedly attenuates

glucose-stimulated insulin secretion from pancreatic b-cells [20].

As PP2A knockout is embryonically lethal in mice [23], the role of

PP2A in pathogenesis of diabetes remains to be determined.

Interestingly, transgenic mice harboring a defective PP2A gene has

been utilized as a model of Alzheimer’s disease [49], suggesting

that a common pathway is operative in neurons and pancreatic b-

cells (see below). Inhibitors of PP2B/calcineurin, including FK506

and cyclosporin A, suppressed insulin mRNA level as well as

insulin secretion in isolated pancreatic islets and b-cell lines

[50,51]. Targeted deletion of PP2B in pancreatic b-cells induces

age-dependent diabetes characterized by decreased b-cell prolif-

eration and reduced b-cell mass with concomitant decreases in the

levels of b-cell transcription factors including MafA, Pdx-1, and

NeuroD [21]. Paradoxically, transgenic mice overexpressing PP2B

in b-cells also display diabetic symptoms with reduced b-cell mass

[22]. Thus, fine control of Ser/Thr phosphatase levels may be

crucial for maintenance of b-cell functions and mass [52]. Under

our experimental conditions, the effect of PP1 and PP2B was

minor compared to that of PP2A in HIT cells (Figure 6), possibly

because of variations in the in vitro culture conditions used to grow/

maintain pancreatic b-cells and insulinoma cells.

CREB functions as a key intersection point, at which the

metabolic signals of circulating glucose level, and hormonal cues

meet. Glucose uptake increases the cellular ATP:ADP ratio, and

eventually leads to increased intracellular Ca2+ concentration via

closure of ATP-sensitive K+ channels and opening of voltage-gated

L-type Ca2+ channels [53]. Ca2+ influx initiated by glucose

stimulation activates Ca2+-calmodulin-dependent protein kinase,

whereas cAMP signals triggered by hormonal cues or forskolin

activate cAMP-dependent proteinase A (PKA). These Ser/Thr

kinases phosphorylate CREB at Ser133 and promote transactiva-

tory potential [10]. In the present study, acute challenges with

15 mM glucose or 30 mM forskolin are equally effective in

prolonging ICER induction in pancreatic islet cells. However,

the differential effects of glucose and forskolin on insulin secretion

is also possible since insulin secretion is a complex consequence

resulted from glucose transport/sensing, insulin synthesis/expres-

sion, membrane depolarization, and insulin exocytosis [54–56].

The differential effects of glucose and forskolin on insulin secretion

maybe partially ascribed to the fact that glucose influences all these

processes while forskolin mainly regulates the insulin expression

with CREB-dependent pathways [25,57]. Recent studies have

shown that although CREB activity is potentiated by PKA, CREB

phosphorylation alone is not a reliable predictor of target gene

activation, and additional CREB regulatory partners such as such

CREB binding protein (CBP) and cAMP-regulated transcriptional

co-activator2 (CRTC2) are required for recruitment of the

transcriptional apparatus to the promoter [10,58]. Thus, multiple

regulatory pathways triggered by circulating glucose and hormon-

al cues converge on the CREB activity in pancreatic b-cells via

CREB phosphorylation and dephosphorylation at Ser133, CBP,

and CRTC2 binding, and competition with ICER.

ICER has been identified in a variety of brain regions, including

the cerebral cortex, the hippocampus, hypothalamic nuclei,

dentate gyrus, and cerebellum [59] where NeuroD is also

expressed [60,61]. Notably, NeuroD contributes to the develop-

ment of neuronal cells [38], exocytotic processes [43], and synaptic

maturation [62]. Therefore, constant silencing of NeuroD by

ICER may facilitate progression of the neuropathological defects

that occur as diabetic complications. Interestingly, diabetes

mellitus and reduced PP2A activity have been implicated as risk

factors for Alzheimer’s disease, although the molecular links are

yet to be fully clarified [63–65]. Given that NeuroD and ICER

play essential roles in neurons and neuroendocrine cells, the

present study provides novel insights into the potential common

25 mM glucose after stimulation with 30 mM forskolin for the indicated time. Long-term culture in 25 mM glucose enhanced the binding of ICER to
CRE (right panels). The absence of immunoprecipitated CRE with a nonspecific IgG verified the specificity of the assay. Results from three
independent ChIP assays were semi-quantitatively measured and presented as fold ratios with respect to the value obtained without forskolin in
5.5 mM glucose. Significant effects of forskolin (*, P,0.05; **, P,0.01) or chronic high glucose (#, P,0.05) are marked.
doi:10.1371/journal.pone.0034860.g004

Figure 5. Chronic hyperglycemia persistently activates the
basal and forskolin-stimulated pCREB. (A) HIT cells were
incubated in the presence of 30 mM forskolin for the indicated time
before harvesting. Western blot analysis was carried out with an
antibody specific for CREB phosphorylated at Ser133 (pCREB). The
membrane was re-probed with an anti-CREB antibody to determine the
total amount of CREB. (B) Levels of pCREB were normalized to that of
total CREB. Data from three independent western assays are presented
as the fold ratios with respect to the value of HIT cells grown in 5.5 mM
glucose in the absence of forskolin. Significant effects of forskolin
(*, P,0.05; **, P,0.01) or chronic high glucose (#, P,0.05) are marked.
doi:10.1371/journal.pone.0034860.g005
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Figure 6. Chronic hyperglycemia reduces the PP2A level. (A, B) Rat islet cells grown in 5 mM or 30 mM glucose were treated with 30 mM
forskolin for 6 h (the same conditions as shown in Figure 2A). Alternatively rat islet cells grown in 5 mM or 30 mM glucose for 8 days were stimulated
with 15 mM glucose for the indicated times (the same conditions as shown in Figure 1A). RT-PCR analysis was employed to determine the relative
PP1a, PP2A Ca, and calcineurin/PP2B-Aa mRNA levels. The average values of PP2A Ca from three independent experiments are presented in the
bottom of the gel as the relative ratios to the basal expression value in 5 mM glucose. (C, D) Western analysis performed with HIT cells grown in
5.5 mM or 25 mM glucose. PP1, PP2A, and PP2B level was normalized to that of actin. The average values from three independent experiments are
presented in each lane as the relative ratio to the basal expression level in 5.5 mM glucose. (E) HIT cell lysates were immunoprecipitated with anti-
PP2A antibody and subject to a standard phosphatase assay with a synthetic peptide. Data from three independent experiments are presented as
fold ratios with respect to the value obtained in 5.5 mM glucose (**, P,0.01). (F) HIT cells grown in 25 mM glucose were cotransfected with 0.4 mg
NeuroD reporter gene and 0.15 mg CREB expression vector, together with indicated amount of the PP2A Ca expression vector. Forskolin was added
to a final concentration of 30 mM for 6 hour. The relative luciferase activity from three independent experiments is presented as the fold ratio with
respect to the value of reporter gene alone (*, P,0.05; **, P,0.01).
doi:10.1371/journal.pone.0034860.g006
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processes by which chronic hyperglycemia accompanies not only

b-cell dysfunction but also diabetic neuropathy.

In conclusion, a decrease in Ser/Thr phosphatase activity under

conditions of chronic hyperglycemia is one of important process

for gradual depletion of insulin reservoir during the progression of

b-cell dysfunction. Interruption of the vicious cycle (Figure 8)

triggered by the reduced phosphatase and the consequent ICER-

mediated repression of NeuroD may be of clinical value in

preventing b-cell failure and glucotoxicity in patients with Type 2

diabetes.

Materials and Methods

Ethics Statements
The Animal Care Committee of the Catholic University of

South Korea approved the experimental protocol by the

Institutional Animal and Use Committee (IACUC No. 2009-

0093-04), and all procedures performed in this study were followed

by ethical guidelines for animal studies.

Plasmids
The reporter plasmids used in this study containing the

proximal promoter regions of NeuroD, including pGL3-Neu-

roD(22.2 kb) and pGL3-NeuroD(2100 bp) have been described

previously by Huang et al., 2000 [34]; an CREB expression vector

by Ghil et al., 2000 [66]; expression vectors for CREMta and

ICER Ic by Inada et al., 1999 [25]; the catalytic subunit of PP2B-

Aa/calcinurin by Oliveria et al., 2003 [67]. Expression vectors for

PP1 and PP2A were generated by inserting the coding region of

each catalytic subunit into the pLenti M1.4-MCMV (Macrogen,

Seoul, South Korea) ; PP2A Ca (gi: 13277983) with BamHI and

ClaI, PP1a (gi: 133892519) with XbaI and ClaI. The CRE site

within the 1,025 bp fragment of the NeuroD promoter was

mutagenized through multiple steps of PCR using Taq polymerase

(Roche, Mannheim, Germany) and finally inserted to pGL3-

NeuroD(22.2 kb) that was digested with NheI and XhoI. The

224 bp fragment with mCRE was inserted into Kpn1 and Nco1

site to replace the wild type CRE in pGL3-NeuroD(2100 bp).

Pancreatic islet cells
Rat pancreatic islets were isolated from Sprague-Dawley rats

(200–230 g) by digesting the pancreatic duct with 1 mg/ml

collagenase P (Roche) in phosphate buffered saline (PBS) and

separated with Histopaque-1077 (Sigma, St. Louis, MO) as

previously described [68]. The islets with similar sizes (100–

150 mm) were hand-picked under a dissecting microscope and

incubated in PRMI 1640 (Invitrogen, Carlsbad, CA) containing

1,800 mg/l (10 mM) glucose, 10% FBS, 100 unit/ml penicillin,

100 mg/ml streptomycine in uncoated petridish for 24 h. Then

islets were divided into two groups and preconditioned for 8 days

either in RPMI 1640 with 10% fetal bovine serum (FBS)

containing 900 mg/l glucose (5 mM, low/normal level) or

5400 mg/l glucose (30 mM, high level) at 37uC under 5% CO2

atmosphere. During this period, medium was replaced with fresh

one every other day. Before RT-PCR analysis, the islet cells from

each group were pre-conditioned in fresh RPMI with 10% FBS

containing 900 mg/l (5 mM) glucose for 2 h at 37uC and then

transferred to fresh RPMI 1640 containing 15 mM glucose

(Figure 1A). After incubation for the indicated period of time,

total RNA was isolated and subject to SYBR green real-time or

semi-quantitative RT-PCR. Alternatively, after pre-incubation in

the presence of 5 mM glucose for 2 h, the islet cells were

transferred to fresh RPMI 1640 containing 5 mM or 30 mM

glucose and then, forskolin (Sigma) was added to a final

concentration of 30 mM (Figure 2A) to avoid the pleiotropic

effects of GLP-1 on b-cells [69] and directly activate adenylyl

cyclase to increase the intracellular levels of cAMP. As shown in

Figure 3 and Supporting Figure S4, both 30 mM forskolin and

10 mM forskolin persistently induced the ICER expression in HIT

cells after long-term cultivation in the presence of 25 mM glucose.

The similar results with 10 mM and 30 mM forskolin suggest that

our original data obtained with 30 mM forskolin are reliable.

Therefore, we utilized 30 mM forskolin throughout our experi-

ments. The homogeneity and the viability of islets were verified

with dithizone (DTZ) staining in the presence of 5 mM or 30 mM

glucose (Figure 1B). Briefly, pancreatic islets were incubated in

RPMI 1640 medium containing 0.1 mg/ml DTZ (Sigma) for

5 min at room temperature. Islets were stained crimson red to

determine homogeneity and viability of islets.

Figure 7. Reduced activity of PP2A is the primary cause of impaired gene expression. (A) HIT cells were transfected with the indicated
amounts of PP2A Ca siRNA for 48 h. RNA was harvested and subjected to RT-PCR analysis or proteins subject to western analysis. Scrambled RNA was
employed to validate the specificity of PP2A Ca-specific siRNA. (B) HIT cells grown in 5.5 mM glucose were transfected with 50 nM siRNA specific for
PP2A Ca or with scrambled sequences. Prior to harvesting, 30 mM forskolin was added to the culture for 1–6 h. Western analysis was performed with
anti-phospho CREB (pCREB Ser133) or PP2A Ca antibody, followed by antibody against total CREB. (C) RT-PCR analysis with HIT cells grown in 5.5 mM
glucose indicated that PP2A Ca-specific siRNA altered the basal and forskolin-induced gene expression of ICER, NeuroD, SUR1, and insulin as shown in
hyperglycemic conditions. (E) RT-PCR analysis with HIT cells stably overexpressing PP2A Ca. Overexpression of PP2A in HIT cells grown in 25 mM
glucose restored the ICER, NeuroD, SUR1, and insulin to the values obtained in normoglycemic (5.5 mM) condition. (D, F) Data from three
independent experiments shown in C, E are presented as fold ratios with respect to the value of scrambled siRNA or mock-transfected HIT cells
(#, P,0.05; ##, P,0.05), and to the value of without forskolin (*, P,0.05; **, P,0.01).

Figure 8. ICER-mediated NeuroD repression aggravates vicious
cycle of chronic hyperglycemia. In normoglycemia, PP2A keeps the
level of CREB below the physiological threshold and transient activation
of CREB in response to glucose and incretin is not sufficient to induce
persistent expression of ICER. In chronic hyperglycemia, CREB is
constantly activated due to the decreased PP2A level. Upon glucose
stimulation or hormonal cues, CREB is further activated for an extended
period of time, leading to prolonged ICER induction. Consequently,
excessively produced ICER proteins repress the NeuroD expression and
the NeuroD’s target genes including insulin, SUR1, and components of
the exocytotic machinery. The hyperglycemic condition is progressively
aggravated through this vicious negative cycle of insulin depletion, and
ultimately progressed to b-cell failure. (a) Inada et al., 1999 [25];
Abderrahmani et al., 2006 [28]; (b) Naya et al., 1995 [4]; (c) Kim et al.,
2002 [5]; (d) Ishizuka et al., 2007 [43], Gu et al., 2010 [7]; (e) Sassone-
Corsi, 1998 [24]; and (f) this study. The active pathways in chronic
hyperglycemia are presented as solid (—) lines, while the defective
pathway as dashed (----) lines. Arrows indicate stimulatory effects, while
blunt ends inhibitory effects.
doi:10.1371/journal.pone.0034860.g008
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Insulin secretion and insulin content assay
Isolated rat islets incubated under low glucose (5 mM) and

hyperglycemic (30 mM) conditions for 8 days were washed in

KRB washing buffer (130 mM NaCl, 3.6 mM KCl, 1.5 mM

CaCl2, 0.5 mM MgSO4, 0.5 mM KH2PO4, 2.0 mM NaHCO3,

and 10 mM Hepes, pH 7.4) and incubated in KRB buffer

containing 5 mM glucose at 37uC for 2 h. Then, 30 islets with

similar sizes were stimulated with 15 mM glucose in 1 ml KRB

buffer at 37uC and the KRB buffer was collected 6 h later for

quantification of secreted insulin with radioimmunoassay (RIA) kit

(Linco, St. Charles, MO). The islets were harvested and total

intracellular insulin content were extracted by incubating them

overnight in 1% hydrochloric acid (ethanol/H2O2/HCl, 14:57:3)

at 4uC. After sonication and centrifugation, 200 ml of the

supernatant was used for RIA to determine the intracellular

insulin content and 800 ml for Bradford assay to determine the

total proteins.

HIT-T15 cell culture
HIT-T15 cells (hamster insulinoma tumor cells) from American

Type Culture Collection (Cat. No. CRL-1777, ATCC, Manassas,

VA 20108,) were grown in DMEM (Invitrogen) with 10% FBS

containing 990 mg/l (5.5 mM, low/normal level) or 4,500 mg/l

(25 mM, high level) glucose for at least two weeks. To stably

overexpress PP2A Ca, HIT cells were transfected with a PP2A Ca
expression vector and selected in the presence of 10 mg/ml

puromycin (Sigma) for 2 weeks.

Reporter gene assay
One day prior to transfection, HIT cells were plated at a density

of 36105 cells per well in 6-well plates. Transfection was carried

out with indicated amount of reporter plasmids and expression

vectors using Lipofectamine Plus (Invitrogen), following the

manufacturer’s recommendations. The day after transfection, the

medium was replaced with fresh growth medium containing 0.5%

FBS, and cell growth continued for 24 h. Forty hours after

transfection, forskolin was added at a final concentration of 30 mM

for the indicated time-period before harvesting cells. Luciferase

activity was determined with cell extracts using the Dual-

Luciferase assay system (Promega, Madison, WI). During

transfection, the total DNA amount was kept constant by adding

pcDNA3 (Invitrogen). A plasmid for Renilla LUC-thymidine

kinase (Promega) was used as an internal control to normalize

transfection efficiency. Normalized luciferase activity was present-

ed as a fold ratio in relation to the basal activity of the reporter

gene in the absence of expression vectors or forskolin.

Quantitative real-time PCR and semi-quantitative RT-PCR
analysis

Isolated rat islets or HIT cells were incubated under low glucose

and high glucose conditions as mentioned above. Then, total RNA

was isolated from cells using RNAzol B (Tel-Test, Friendswood,

TX), and cDNA synthesized from 1 mg of RNA using the First-

strand cDNA synthesis kit (Roche). Two ml of reaction product

from reverse transcription for first-strand cDNA was used for

SYBR green quantitative real-time PCR for islets using a Rotor-

gene Q, Qiagen Thermal-cycler equipment (Qiagen, Valencia,

CA) and power SYBRH Green PCR master mix (Applied

Biosystems, Foster city, CA). Primers for NeuroD, ICER I,

SUR1, Insulin I/II in SYBR green real-time PCR were designed

to recognize the separate exons of both rat and hamster genes to

exclude the possibility of amplifying genomic DNA (Supporting

Table S1). The PCR conditions for each set of primers were as

follows: after initial denaturation at 95uC for 10 min, 40 cycles of

denaturation at 95uC for 15 sec, annealing at indicated temper-

ature for 30 sec, and extension at 72uC for 40 sec (Supporting

Table S1). Following the final amplification cycle, a melting curve

was acquired by one cycle of heating at 72uC for 1 min, and then

increasing the temperature to 95uC at a rate of 1uC per min. The

specificity of PCR reaction was ensured by single peak in melting

curve analysis. The original values of cycle threshold (Ct) are

described in Supporting Table S3. The results were normalized to

the expression levels of the GAPDH reference gene and the

relative mRNA levels were calculated using the 22DDCt method

[70]. The data represent means 6 S.E. of three independent

experiments, expressed as fold ratio of mRNA expression

compared with the control value (islets cultivated in 5 mM glucose

without 15 mM glucose stimulus in Figure 1 or 30 mM forskolin

treatment in Figures 2). Each experiment was carried out in

duplicates. Traditional, semi-quantitative RT-PCR was also

carried out with the same sets of primers for NeuroD, SUR1,

insulin, pdx-1, PP1a, PP2B-Aa, and PP2A Ca and GAPDH

except ICER (Supporting Table S1). The ICER-specific primer set

could detect two splice variants, ICER I and ICER Ic. PCR was

performed with an initial denaturation at 98uC for 1 min; 30

cycles for each genes comprising 95uC for 1 min, annealing at the

indicated temperature for 30 sec, and extension at 72uC for 1 min;

and a final extension at 72uC for 7 min. PCR products were

separated by electrophoresis on 2% agarose gels. Signals from

traditional RT-PCR results were captured with a VersaDoc 4000

Imager (Bio-Rad Laboratories, Hercules, CA) and normalized to

the value of GAPDH. PCR with 28,32 cycles yielded similar

extent of amplification (Supporting Figure S1), indicating the PCR

reaction was not saturated. The results were also similar to those

obtained with SYBR green real-time PCR (compare Figure 1D–H

with Supporting Figure S1), suggesting the reliability of our

traditional, semi-quantitative RT-PCR data performed with HIT

cells.

Western blot analysis
Cells were lysed in RIPA buffer (50 mM Tris; pH 7.4, 1 M

NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% sodium dodecyl

sulphate) using a standard protocol and subjectect to polyacryl

amide gel electrophoresis. After transferred to PVDF membrane,

the protein was identified with the primary antibodies: phospho-

CREB (1:1000, polyclonal, Cell Signaling, Danvers, MA), catalytic

subunits of PP1a, PP2B-Aa, and PP2A Ca (1:1000, monoclonal,

Upstate, Temecula, CA). Immunoreactivity was visualized using

horse radish peroxidase-conjugated anti-rabbit or mouse IgG

antibodies (1:5000, Zymed, San Francisco, CA) and the Super-

Signal Chemiluminescence Substrate kit (PIERCE, Rockford, IL).

To confirm equal loading, blots were stripped and reprobed with

antibodies against CREB (1:1000, Cell Signaling) or a-actin

(1:1000, Sigma).

Chromatin immunoprecipitation (ChIP) assay
HIT cells (1.56106/100 mm dish) were incubated in 1% (v/v)

formaldehyde, lysed, and subjected to immunoprecipitation with

1 mg of anti-ICER antibody (SantaCruz Biotechnology Inc., Santa

Cruz, CA). ICER-bound DNA was precipitated using a ChIP

assay kit (Upstate), following the manufacturer’s recommendation,

and resuspended in 20 ml of H2O. Amplification was conducted

with 2 ml DNA solution under the following conditions: initial

denaturation at 98uC for 1 min, 35 cycles of 94uC for 1 min, 52uC
for 40 sec, and 72uC for 1 min, and a final extension step at 72uC
for 7 min. The PCR primers designed for amplifying the proximal

NeuroD promoter were 59-aaagttctggggaggggtgaatgag-39 (2160/
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2134; forward) and 59-cttgccttctgcgtgggcgaattcc-39 (+5/+29 bp;

reverse). The 189 bp PCR product was analyzed on a 2% agarose

gel.

PP2A activity assay
HIT cells (36105/35 mm dish) were harvested in phosphatase

extraction buffer (100 mM Tris-HCI, pH 7.6, 2 mM MgCl2,

1 mM CaCl2, 2 mM EGTA, 2 mM EDTA, 1% Triton X-100,

1 mM PMSF, protease inhibitor cocktail). After sonification, the

clear lysates were precleared with 50% (w/v) protein A Sepharose

bead (Amersham, Little Chalfont, Buckinghamshire, UK) and

then incubated with 4 mg of antibody against the catalytic subunit

of PP2A Ca (Upstate). After washing with PBS, the remaining

activity in immunoprecipitates was assessed using a Ser/Thr

phosphatase assay kit (Upstate) with 0.75 mM synthetic PP2A-

specific phosphopeptide (K-R-pT-I-R-R) as a substrate for 10 min

at 30uC. Free phosphate in a 25 ml reaction volume was

colorimetrically measured at 650 nm after reaction with malachite

green as recommended by the manufacturer. Specific activity of

phosphatase (pmoles of phosphate/min/mg protein) was deter-

mined by comparing with controls containing no enzyme or a

freshly prepared phosphate standard. The data from three

independent experiments are presented as the mean 6 S.E. with

respect to the value in the presence of 5 mM glucose.

Preperation of PP2A siRNA and transfection
HIT cells were transfected with 50 nM siRNA for silencing

PP2A Ca (59-tggaacttgacgacactcttaa-39) or scrambled siRNA

(Genolution, Seoul, South Korea), using Lipofectamine RNAi

MAX (Invitrogen). The following day, the medium was replaced

with fresh DMEM (5.5 mM glucose) containing 0.5% FBS, and

cell growth continued for 24 h. Silencing or overexpression of

PP2A was verified by RT-PCR and western analysis (Figure 7A).

Statistical analysis
Signals from western blot, RT-PCR and ChIP analysis were

captured with a VersaDoc 4000 Imager (Bio-Rad Laboratories).

All experiments were conducted a minimum of 3 times, and data

presented as means 6 S.E. P values for statistical significance were

estimated with respect to the indicated control value using the t test

(*/#, P,0.05; **/##, P,0.01).

Supporting Information

Figure S1 The effects of chronic hyperglycemia on b-cell
specific genes in rat islets were analyzed using semi-
quantitative RT-PCR. (A) The mRNA levels of indicated genes

in various conditions as shown in Figure 1A were also analyzed

using traditional, semi-quantitative RT-PCR analyses. Two

isoforms of ICER I (168 bp) and its splice variant, ICER Ic
(129 bp) were identified with the same set of primers, while non-

allelic Ins 1 and Ins 2 were detected as s single band (Supporting

Table S1). The effects of chronic hyperglycemia on gene

expression were similar when PCR was carried out for 28,32

cycles, suggesting that there was no saturation of the PCR

amplification or ethidium-bromide staining. (B) RT-PCR results

from amplification for 30 cycles were semi-quantitatively mea-

sured and normalized to that of GAPDH. Data from three

independent experiments are presented as average fold ratios with

respect to the value of 5 mM glucose-cultured islets before glucose

stimulation. The overall effects of chronic hyperglycemia on gene

expression were similar to the results obtained with SYBR green

real-time PCR as shown in Figure 1, verifying that the semi-

quantitative RT-PCR data in the subsequent studies with HIT

cells were also reliable to demonstrate the relative mRNA level.

Significant effects of 15 mM glucose (*, P,0.05; **, P,0.01) or 8-

day incubation in 30 mM glucose (#, P,0.05) were marked.

(TIF)

Figure S2 The effects of chronic hyperglycemia on the
responsiveness to forskolin in rat islets were analyzed
using semi-quantitative RT-PCR. (A) Semi-quantitative RT-

PCR from islet cells cultured in various conditions as shown in

Figure 2A also represents the chronic effect of hyperglycemia on

the expression of ICER, NeuroD, SUR1, and insulin gene. (B)

RT-PCR results from amplification for 30 cycles were semi-

quantitatively measured and normalized to that of GAPDH. Data

from three independent experiments are presented as average fold

ratios with respect to the value of 5 mM glucose-cultured islets

prior to addition of forskolin. The overall effects of chronic

hyperglycemia on the responsiveness to forskolin were similar to

the results obtained with SYBR green real-time PCR as shown in

Figure 2, verifying that the semi-quantitative RT-PCR data from

HIT cells in the present study were also reliable to demonstrate the

relative mRNA level. Significant effects of forskolin (*, P,0.05;

**, P,0.01) or 8-day incubation in 30 mM glucose (#, P,0.05)

were marked.

(TIF)

Figure S3 Cloning of hamster PP2A Ca. The hamster PP2A

Ca cDNA was cloned (gi:325504919) in this study. The sequence

analysis indicated 97.5% identity at the DNA level and 99.97%

identity at the protein level among the mammals. Nucleotide

sequences used for siRNA are marked with the solid-line and the

primers used for RT-PCR analysis are marked with dotted lines.

(TIF)

Figure S4 To validate the effectiveness of 30 mM for-
skolin. To avoid the pleiotropic effects of GLP-1 on b-cells and

directly activate adenylyl cyclase to increase the intracellular levels

of cAMP, we utilized 30 mM forskolin throughout our experi-

ments. As shown in Figure 3 with 30 mM forskolin, 10 mM

forskolin also persistently induced the ICER expression in HIT

cells after long-term cultivation in the presence of 25 mM glucose.

The similar results with 10 mM and 30 mM forskolin suggest that

our original data obtained with 30 mM forskolin are reliable.

(TIF)

Table S1 Experimental conditions for SYBR green real-
time PCR and traditional RT-PCR. Both rat (r) and hamster

(h) gene specific primers for NeuroD, ICER I, SUR1, Insulin I/II,

PP1a, CaN, and PP2A Ca were designed to recognize the

separate exons to exclude the possibility of amplifying contami-

nating genomic DNA. Blast analysis showed high sequence

homology for each gene between rodents and mammals ranging

from 92 to 98%. The GenBank numbers for rat and hamster

sequences were used to design the common primers for semi-

quantitative RT-PCR and SYBR green real-time PCR except for

the ICER gene. The ICER-specific primers recognized two

isoforms, ICER I (168 bp), and its splice variant, ICER Ic (129 bp)

in traditional, semi-quantitative RT-PCR. However, this primer

set interfered with real-time amplification, thus we designed a new

primer for SYBR green real-time PCR which only recognized

ICER I but not lacking domain called c in ICER Ic. For the

insulin genes, two nonallelic genes (insulin I and II) displaying

more than 90% homology [71,72] were detected as a 308 bp

product with the same set of primers.

(TIF)

Table S2 CRE-like sequences are conserved at the
proximal promoter region of NeuroD. In the mouse
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NeuroD gene, the CRE like sequence is found 273 bp from

transcription initiation site, which is 43 bp upstream of the TATA

box. The CRE-like sequence (TCAGCTC/A
A/G) is highly

conserved among humans, primates and rodents, suggesting

functional significance through evolution.

(TIF)

Table S3 Ct mean values from SYBR green real-time
RT-PCR of b-cell specific genes expressed in pancreatic
rat islets. Rat pancreatic islet cells were cultured in the presence

of 5 mM or 30 mM glucose for 8 days before being challenged

with 15 mM glucose or 30 mM forskolin (Figure 1A and 2A).

Quantitative real time RT-PCR was carried out using SYBR

green. Each experiment was carried out in duplicates and the

mean values of cycle threshold (Ct) from three independent

experiments were presented as means 6 S.E. These Ct values

were used to deduce relative mRNA levels using the 22DDCt

method. The relative mRNA level of each gene was normalized to

the value of GAPDH and presented as a fold ratio with respect to

the control value (non-glucose or forskolin treated-islet cells under

conditions of 5 mM glucose) in Figure 1 and 2.

(TIF)
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