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The explosive development of genomics technologies including microarrays and next generation sequencing (NGS) has 
provided comprehensive maps of cancer genomes, including the expression of mRNAs and microRNAs, DNA copy numbers, 
sequence variations, and epigenetic changes. These genome-wide profiles of the genetic aberrations could reveal the 
candidates for diagnostic and/or prognostic biomarkers as well as mechanistic insights into tumor development and 
progression. Recent efforts to establish the huge cancer genome compendium and integrative omics analyses, so-called 
”integromics“, have extended our understanding on the cancer genome, showing its daunting complexity and 
heterogeneity. However, the challenges of the structured integration, sharing, and interpretation of the big omics data still 
remain to be resolved. Here, we review several issues raised in cancer omics data analysis, including NGS, focusing 
particularly on the study design and analysis strategies. This might be helpful to understand the current trends and strategies 
of the rapidly evolving cancer genomics research.  
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Introduction

In the last decade, numerous genomic studies have ad-
dressed the enormous complexity of the cancer genome. 
Genomic profiling using microarray technology could 
stratify the tumors into homogeneous subgroups, providing 
novel clinical insights for the development of diagnostics and 
therapeutics as well as systematic views on the underlying 
mechanisms of tumor progression. In addition to the 
microarray technologies, explosive advances on sequencing 
technologies have been made recently, which is called “next 
generation sequencing (NGS).” Compared to the previous 
DNA sequencing of the Sanger method using dideo-
xynucleotide termination reaction termed as “first-ge-
neration” sequencing, NGS uses massively parallel sequen-
cing method generating hundreds of millions of short (~200 
bp) DNA reads, which can sequence a human genome 
rapidly with extremely lower cost. The earlier NGS method 
with the single-end read sequencing inevitably produces the 
short-read problems, limiting the accuracy of genome 
alignment. This could be improved by applying a paired-end 

sequencing method, allowing substantial advances in 
identifying not only point mutations but also genomic 
rearrangements, such as deletions, amplifications, inver-
sions, translocations, and gene-fusions [1, 2]. 

The NGS technology is now divided into “second ge-
neration sequencing” and “third generation sequencing.” 
The second generation sequencing refers to the strategies of 
short-read alignment, while the rapidly being developed 
technology of the third generation sequencing refers to the 
single DNA molecule based sequencing. The third gene-
ration method has advantage of less amount of DNA input 
that allows the emerging field of single cell sequencing [3]. 
Moreover, there is no step for PCR amplification, therefore, 
the nucleotide incorporation errors can be handled. 

However, all the platforms of NGS technologies still have 
limitations in accurate base calling and alignment. The 
errors are likely to be platform-dependent, which increases 
the complexity of the data analysis. Therefore, the cost for 
bioinformatic analysis, rather than the sequencing itself 
continues to grow, which is referred to as “the $1,000 
genomes, the $100,000 analysis” problem [4].
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Cancer Genome Analysis with NGS Techno-
logies

The application of Exome-Seq and Whole Genome-Seq 
profiled a mutational spectrum in various cancers [5-8]. The 
RNA-Seq could profile not only the gene expressions but 
also new parameters such as allelic expression, alternative 
splicing [9, 10], RNA-editing [11], and alternative polya-
denylation of 3'-untranaslated region (3'-UTR) [12, 13]. 
Structural variations such as gene-fusions, e.g., TMPRSS2- 
ERG in prostate cancer [14] and KIF5B-RET in lung cancer 
[15] have been identified from the analysis of NGS data. 
Moreover, the patterns of genome rearrangements can be 
analyzed systematically. For example, a novel pattern of 
genomic rearrangement such as fold-back inversion could be 
found by simply examining the short read alignment of NGS 
data [16]. A novel mechanism of cancer genome rearran-
gement i.e., chromothripsis has been proposed, which 
represent a catastrophic event of fragmentation and reas-
sembly of a single chromosome [17]. In addition, high- 
resolution epigenomic profiles of cancer genome could be 
obtained by applying NGS to chromatin immunoprecipita-
tion-sequencing (ChIP-Seq) and methylated DNA immuno-
precipitation-sequencing (MeDIP-Seq). For example, a re-
cent study of the genome-wide DNA methylation profile 
showed novel patterns in which the majority of DNA 
methylation changes occurs at CpG island shores neigh-
boring the regions up to 2 Kb from CpG islands, and revealed 
the patterns of cancer-specific and tissue-specific DNA 
methylation [18, 19]. Aberrant histone modification was 
also found in cancers showing an association with the 
patient’s prognosis [20]. These studies support the pivotal 
role of epigenetic regulation in cancer development and 
progression. Moving forward, new applications such as 
genome-wide translocation sequencing (HTGTS) [21] and 
translocation capture sequencing (TC-Seq) [22] have 
recently been proposed, which could profile the genome- 
wide translocation hotspots. 

Notably, the advantage of NGS is not restricted to these 
applications. It serves a platform for the identification of 
novel RNAs or DNAs. For example, the long noncoding 
RNAs (lncRNAs) that are transcribed from intergenic and 
intronic regions have been identified in prostate cancers i.e., 
prostate cancer-associated ncRNA transcripts (PCATs) [23]. 
A novel class of DNA i.e., extrachromosomal microDNA, 
has been recently found by NGS technology, which is derived 
from unique non-repetitive sequence enriched in 5'-UTR, 
exons, and CpG islands [24]. The role of microDNA in 
cancer will be the next question.

Challenges in cancer genomics 

The primary study goals of cancer genomics are not 
simple, which include the studies to get either clinical or 
mechanistic insights from the cancer genome. To clarify the 
complicated study designs and strategies of cancer geno-
mics, we have categorized the gene signatures obtained from 
cancer genome data into four classes prediction, phenotype, 
function, and molecular targets based on the study goals 
[25]. The majority of the previous studies have suggested 
the translational or clinical utility of the genomics data by 
addressing the candidate biomarkers or the prediction signa-
tures for predicting patients clinical outcomes, such as recur-
rence, survival, metastasis, or response to therapies. Not-
withstanding the overwhelming identification of candidate 
biomarkers from the cancer genome, only a handful of can-
didate biomarkers that have been discovered from genomic 
analyses can succeed in the validation of the clinical utility 
[18]. There are several challenges in cancer genomics that 
preclude clinical utility. One of them would be data repro-
ducibility. They might be due in part to the experimental 
biases as well as sample cohort issues. The use of different 
platforms measuring gene expressions and different data 
processing methods could produce biased observation in 
each study. Increasing sample size will be one of the 
solutions to find proper biomarkers, overcoming the repro-
ducibility problem. Undoubtedly, large-scale sample collec-
tion provides increased statistical power. However, previous 
studies, even with large sample sizes, have often failed to 
reproduce their findings in independent studies [26]. This 
might be due mostly to the use of different protocols and 
analysis methods. Moreover, biased sample collection may 
also affect the performance of prognostic biomarkers, 
leading to subsequent failure to validate the biomarker in 
another patient population [27]. For example, diagnostic 
biomarkers must be discovered in early-stage tumors; 
however, the sample collection of early tumors with enough 
of a sample size might be difficult in the clinical setting [18, 
28]. In addition, the cost-effectiveness of the sample size 
enrolled in a study should be considered. Simply increasing 
the sample size might not be the best solution. 

The sample sources and qualities are also important 
factors to be considered in the study design. For example, 
circulating DNAs or microRNAs in the plasma or urine can 
be used to develop “noninvasive” biomarkers in cancer 
patients, which might bring the technology much closer to 
the clinic [29, 30]. Attempts to use formalin-fixed paraffin- 
embedded (FFPE) tissues might also be more applicable to 
the clinic [31], although the quality and the quantity of the 
DNAs or RNA extracts from FFPE or plasma are still 
problematic for genomics studies requesting further 
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elaboration. 

Dissecting the tumor heterogeneity 

The data complexity comes not only from the hetero-
geneous or biased sample composition, but also from the 
innate complexity of tumor biology. Previously, mounting 
evidence has shown the enormous heterogeneity of tumors 
at the molecular level. The tumor heterogeneity can be 
explained by two hypothetical models. One is the clonal 
segregation model with a multi-step process, and the other is 
the cancer stem cell theory. The cancer stem cell model 
describes the heterogeneous cellular origin of cancers from 
primitive progenitor cells to mature differentiated cells, 
which may contribute to tumor heterogeneity. In this 
context, genomic profiling studies could define the cancer 
subpopulation harboring stem-like traits in various cancer 
types, supporting the cancer stem cell theory [32, 33]. Simi-
larly, we also defined the bilineal trait in a subpopulation of 
hepatocellular carcinoma (HCC) by comparing the gene 
expression profiles of HCC and cholangiocarcinoma (CC) 
[34]. This result showed the continuous liver cancer 
spectrum between HCC and CC, suggesting that stem-like 
or de-differentiation traits may give rise to the hetero-
geneous progression of HCC. We also suggested that the 
dysfunction of p53 machinery is associated with the 
acquisition of the stemness trait in HCC [35]. Recently, this 
association could be validated by showing p53 knockout 
mouse model can give rise to bilineal liver cancers [36].    

In addition, various host factors may contribute to tumor 
heterogeneity. Interactions of the tumor cells with host 
eco-system, such as innate immune systems, or the 
reactions of surrounding microenvironment against the 
tumor may affect the tumor behaviors [37]. Thus, the proper 
detection of biomarkers might be difficult without con-
sidering the effect of host factors. Furthermore, the intra- 
tumoral heterogeneity of cancers have been notified in detail 
by genome-wide sequencing of multi-loci from the same 
tumor [38]. The comparison of primary and metastatic 
tumors by single cell sequencing also revealed the sequential 
mutation process during cancer progression [39]. Similarly, 
the comparison of mutations from multiple HCC tumors in 
the same patient could define the evolutionary lineage 
among tumors cells [40]. Strikingly, the development of 
single-cell sequencing technology could provide a more 
detailed and systematic view on intra-tumoral heterogeneity 
[41, 42]. Of interest, such attempts enabled the construction 
of phylogenic trees from mutational heterogeneity, which 
revealed evolutionary tumor growth opening a new field of 
“cancer evolution”.  

Returning to biology for clinical utility

As discussed above, there are many factors contributing to 
tumor heterogeneity, which may impede the discovery of 
new biomarkers. Thus, we are now urgently in need of 
developing new strategies for biomarker discovery from 
cancer genome data. Considering the huge complexity of the 
cancer genome and the limitation of current technologies, it 
would be a reliable strategy to evaluate the functional 
relevance of the candidate biomarkers rather than simply 
showing the statistical significance of the association by 
enrolling larger samples or applying more stringent 
statistics. Although the conventional strategies for bio-
marker discovery do not require the functional significance 
of the candidates [43], current hurdles in cancer genomics 
request a functional validation step in the pipeline of the 
biomarker discovery. Our limited understanding of the 
complexity of cancer biology is a significant challenge for 
translational interpretation of the cancer genome.

Challenges of big data issues and integromics 

More recently, systematic structuring and integration of 
multiple and multi-layered omics data resources, i.e. 
integromics, are thought of a state-of-the-art strategy. The 
recent establishment of The Cancer Genome Atlas (TCGA) 
and the International Cancer Genome Consortium (ICGC) 
could accelerate and facilitate the integration and sharing of 
cancer genome data [44]. Multi-layered integromics could 
define tumor heterogeneity, revealing pivotal aberrations of 
genetic events or signaling pathways [45]. In parallel, 
genomic repositories for drug activities have been esta-
blished [46-48]. Linking the profiles of drug sensitivity to 
the cancer genome could provide a powerful platform to 
guide rational and personalized cancer therapeutics. 

Now, as genomic data are increasing and accumulating 
enormously, new study designs and analysis strategies for 
integromics might be required, particularly with the context 
of tumor heterogeneity and the discovery of the functional 
biomarkers. As shown in Fig. 1, the first step in cancer 
integromics is the dissection of tumor heterogeneity. Then, 
the next step will be a recapitulation of the relations between 
clinical/biological phenotypes and molecular genotypes in 
cancer subpopulations, which can address novel functio-
nalities in particular subpopulations of cancers. We suggest 
that the discovery of reliable candidate functional bio-
markers as well as functional genetic alterations, so-called 
“driver events”, can be achieved through performing this 
step-by-step evaluation of both clinical and functional 
utilities. This hybrid study design would open an exciting era 
for developing new “functional biomarkers” and preventive/ 
therapeutic strategies with the consideration of biological 
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Fig. 1. Hybrid study design for integromics approach.

backgrounds of tumor heterogeneity. 

Conclusion

We briefly reviewed the current challenges and per-
spectives of integrative cancer genomics, focusing parti-
cularly on the complexity of omics data and cancer biology. 
Integromic approaches with functional evaluation should be 
considered even for clinical as well as mechanistic appli-
cations of cancer genome data. Necessarily, the challenges of 
big data (particularly the NGS platforms) and integromics 
should be considered in the study design. A deep under-
standing of both cancer biology and omics data charac-
teristics is necessarily required for successful cancer genome 
analysis. Moving forward, it is clear that progress will come 
through large-scale, wide-scope, and multi-disciplinary 
collaborations and sharing systems, which will accelerate 
the realization of translational and personalized medicine in 
the near future.
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