
©
20

12
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te

www.landesbioscience.com Prion 121

Prion 7:2, 121–126; March/April 2013; © 2013 Landes Bioscience

 extrA view extrA view

Extra-View to: Kim KS, Choi YR, Park JY, Lee JH, 
Kim DK, Lee SJ, et al. Proteolytic cleavage of 
extracellular α-synuclein by plasmin: implica-
tions for Parkinson disease. J Biol Chem 2012; 
287:24862-72; PMID:22619171; http://dx.doi.
org/10.1074/jbc.M112.348128.

Keywords: α-synuclein, Parkinson 
disease, proteolysis, protease, plasmin, 
neurosin, matrix metalloproteinase, 
neurodegenerative disease, prion, 
aggregation-prone proteins

Submitted: 09/16/12

Revised: 11/08/12

Accepted: 11/11/12

http://dx.doi.org/10.4161/pri.22850

*Correspondence to: Sang Myun Park; 
Email: sangmyun@ajou.ac.kr

Many neurodegenerative diseases 
such as Alzheimer disease and 

Parkinson disease show similar charac-
teristics. They typically show deposits 
of protein aggregates, the formation of 
which is considered important in their 
pathogenesis. Recently, aggregation-
prone proteins have been shown to spread 
between cells and so may contribute to 
the pathogenesis of diseases like prion 
disease. Such a pathogenesis pathway is 
possibly common to many neurodegen-
erative diseases. If confirmed, it could 
allow the development of therapeutic 
interventions against many such dis-
eases. In Parkinson disease, α-synuclein, 
a major component of cytosolic protein 
inclusions named Lewy body, has been 
shown to be released and taken up by 
cells, which may facilitate its progres-
sive pathological spreading between cells. 
Accordingly, inhibition of spreading by 
targeting extracellular α-synuclein may 
represent a new therapy against Parkinson 
disease. Research into the intercellular 
spreading of extracellular protein aggre-
gations of α-synuclein and its clearance 
pathway are reviewed here with a focus 
on the proteolytic clearance pathway as 
a therapeutic target for the treatment of 
Parkinson disease. Considering the simi-
lar characteristics of aggregation-prone 
proteins, these clearance systems might 
allow treatment of other neurodegenera-
tive diseases beyond Parkinson disease.

Introduction

Age-related progressive neurodegenera-
tive diseases such as Alzheimer (AD) and 
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Parkinson (PD) diseases are increasingly 
affecting the world’s aging population. 
Despite much research, their pathogen-
esis still remains insufficiently under-
stood to allow the rational design of 
therapeutic interventions that reduce their 
progression.

Interestingly, many neurodegenerative 
diseases involve protein aggregate inclu-
sions, despite displaying different symp-
toms. PD shows cytosolic Lewy bodies 
or Lewy neurites composed of mainly 
α-synuclein (α-syn). AD shows extra-
cellular senile plaques of mainly Aβ and 
cytosolic neurofibrillary tangles compris-
ing mainly hyperphosphorylated tau. 
Moreover, polyglutamine diseases, amyo-
tropic lateral sclerosis (ALS) and prion 
disease show typical protein inclusions 
composed of mainly mutated polygluta-
mine expanded proteins, mutated super-
oxide dismutase (SOD)-1 and PrPsc, 
respectively.1 Furthermore, the process 
of protein aggregate formation is consid-
ered to be significant in the pathogen-
esis of neurodegenerative diseases and 
aggregation-prone proteins are promising 
therapeutic targets for the treatment of 
such neurodegenerative diseases.

Recently, these aggregation-prone 
proteins have been observed to show 
unexpected yet interesting similar charac-
teristics. Their regional and intercellular 
spreading has been observed irrespective 
of cytosolic or extracellular proteins and 
these processes are suspected to be signifi-
cant in the pathogenesis of neurodegen-
erative diseases. Therefore, the inhibition 
of these proteins spreading may represent 
a new possible treatment of such diseases.
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Interestingly, other cytosolic proteins, 
such as tau, SOD-1 and polyglutamine 
expanding proteins, implicated in the 
pathogenesis of other neurodegenerative 
diseases have also been observed to have 
similar characteristics to α-syn.

Tau, a major component of cytosolic 
neurofibrillary tangles observed in AD, 
has been found in both healthy and AD 
CSF.34,35 It is secreted from cells by uncon-
ventional exocytosis or exosome36-38 and 
its aggregates are taken up by cells via a 
hitherto unknown mechanism.39 In addi-
tion, extracellular tau has been shown to 
be toxic to cultured neuronal cells,40 and 
prion-like intercellular spreading of tau 
aggregates has been reported both in vivo 
and in vitro.41,42

Native and misfolded SOD-1 have 
also been observed in the CSF of control 
and ALS patients.43 Once secreted,44,45 it 
causes neurotoxicity and glial cell activa-
tion.45,46 Prion-like propagation of SOD-1 
aggregates have also been reported both in 
vivo and in vitro.47,48

Polyglutamine peptide aggregates 
observed in polyglutamine diseases have 
also been reported to be internalized by 
cells and become co-sequestered in aggrea-
somes with cytosolic proteins,49 implying 
the possibility of the intercellular spread-
ing of polyglutamine aggregates.

Accordingly, the prion-like characteris-
tics of aggregation-prone proteins respon-
sible for many neurodegenerative diseases 
may be a common pathogenic mechanism 
and thus the reason for the recent growing 
interest (see reviews in refs. 1 and 50–54 
for more details).

Proteolytic Clearance  
as a Therapeutic Approach 

Against PD and Other Diseases

Although this hypothesis needs further 
proof, it has led to the investigation of 
therapies that slow the progression of neu-
rodegeneration by preventing the intercel-
lular spreading of these proteins.

Preventing the spread of extracellular 
α-syn may be a suitable means of halt-
ing the progression of PD. The level of 
extracellular α-syn depends both on the 
rate of α-syn release from neuronal cells 
and the rate of its removal through various 
clearance pathways such as cell-mediated 

cytoplasm has been received most atten-
tion. However, this view is beginning to 
change.

Monomeric and oligomeric α-syn have 
been continuously reported to be pres-
ent in both healthy and diseased human 
cerebrospinal fluid (CSF) and blood 
plasma.8-10 In addition, α-syn and its 
aggregates have been shown to be secreted 
from neuronal cells by a non-classical exo-
cytic pathway11 and its release is increased 
under various protein misfolding stress 
conditions.12 α-Syn has also been reported 
to be secreted in a calcium-dependent 
manner by exosomes,13 and lysosomal 
dysfunction increases exosome-mediated 
α-syn release.14 These studies imply that 
extracellular α-syn is not only due to 
cellular leakage by cell death, but also 
its release from cells. This phenomenon 
is proposed to be probably part of a cel-
lular quality control mechanism for the 
removal of damaged and harmful proteins 
by exocytosis.

Uptake of α-syn into cells has also been 
observed.15-18 Although the exact mecha-
nism of α-syn uptake has not been estab-
lished, 11-amino acid imperfect repeats 
found in the α-syn sequence have been 
shown to be critical.16 α-Syn has been 
shown to be internalized via GM1 and 
hitherto unknown protein receptors via a 
lipid raft-dependent endocytosis mecha-
nism,18 suggesting that cytosolic α-syn 
can be released from cells and taken up 
by other cells. In addition to studies of its 
release and uptake, extracellular α-syn has 
been reported to have effects on neurotox-
icity15,19,20 and inflammation.14,18,21-24

Recent observations that the trans-
plants grafted into the brain of PD 
patients displayed Lewy bodies25,26 were 
considered to be connected with Braak et 
al.’s proposal that Lewy body pathology 
spreads from one brain area to another 
according to a stereotypic pattern in spe-
cific stages.27 Consequently, more recent 
in vitro and in vivo experiments28-33 have 
shown that α-syn aggregates released from 
neuronal cells can be transferred to neigh-
boring neurons and form Lewy body-like 
inclusions, providing a mechanistic basis 
for the spread of α-syn pathology in PD 
patients and a hypothesis that a prion-like 
mechanism may underlie the progression 
of PD.

This review discusses the intercellu-
lar spreading of extracellular α-syn and 
the proteolytic clearance of extracellular 
α-syn as a new therapeutic target for PD. 
The characteristics of α-syn are compared 
with those of other aggregation-prone 
proteins implicated in neurodegenerative 
diseases.

The Relationship Between PD  
and α-Syn

PD is the second most common neuro-
degenerative disease after AD. It is char-
acterized by a progressive dopaminergic 
neuronal loss in the substantia nigra pars 
compacta. Also characteristic is the pres-
ence of intracytoplasmic protein aggre-
gates, Lewy bodies or Lewy neurites, as 
observed during other similar neurode-
generative diseases associated with aggre-
gation-prone protein.2

The intracytoplasmic protein aggre-
gates observed in PD patients are mainly 
composed of α-syn, a small protein that 
is expressed abundantly in neuronal cells; 
it is localized mainly in the presynap-
tic nerve terminals.3 Mutations of α-syn 
gene (A30P, E46K and A53T) and mul-
tiplications of the wild-type gene have 
been found to be associated with familial 
cases of early onset PD. Moreover, genetic 
variations in both the promoter and the 
region of the SNCA gene encoding the 
α-syn protein have been found to increase 
the susceptibility to PD.4 Recent genome-
wide association studies (GWASs) have 
identified variants of the SNCA gene that 
are coupled to increase PD susceptibil-
ity.5,6 Overall, a clear link has been found 
between this protein and idiopathic and 
familial PD. In support of these genetic 
studies, animal models with transgenic 
overexpression of α-syn have been shown 
to mimic several aspects of PD.7 These 
observations in addition to several in 
vitro studies have firmly established the 
involvement of α-syn in the pathogenesis 
of PD.7

Extracellular α-Syn  
and the Spreading of α-Syn  
Pathology Between Cells

α-Syn is normally considered a cyto-
plasmic protein and its function in cells’ 
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In addition, dysregulation of these pro-
tease systems has also been observed to 
be associated with neurodegenerative dis-
eases. In PD, reduced expression of neu-
rosin has been observed in the brain of an 
animal model of PD and in patients with 
dementia with Lewy bodies.62 Alterations 
of MMPs have also been observed in neu-
rodegenerative diseases other than PD,79 
and extracellular α-syn has been reported 
to regulate the activity of MMPs.22,80,81 
Although the association between the 
plasmin system in the CNS and PD has 
yet to be established, the reduction of 
tPA activity by extracellular α-syn in pri-
mary astrocytes and microglia has been 
reported.80 Extracellular α-syn has also 
been shown to increase PAI-1 expression 
in neurons, astrocytes and microglia and 
thus may inhibit plasmin activity,59 sug-
gesting that the plasmin system may be 
dysregulated in PD. Furthermore, the 
association between the plasmin system 
and other neurodegenerative diseases has 
been well reported. In AD, decreased tPA 
activity has been observed in AD models 
and its activity has been proposed to be 
controlled by a substantial increase of PAI-
1.82 Increased PAI-1 has been observed in 
APP transgenic mice83 and in the CSF 
of AD patients.84 Brain plasmin activity 
is also reduced in AD brains.70 In prion 
disease, tPA accelerates the cleavage of 
prion protein by plasmin, implying that 
the plasmin system may be involved in the 
pathogenesis.85 Dysregulation of neprily-
sin and insulin degrading enzyme, major 
Aβ degrading enzymes, has also been 
observed in AD.86-88 Therefore, dysregula-
tion of the proteolytic clearance systems 
may be a common pathologic mechanism 
of neurodegenerative diseases beyond PD.

Other Clearance Systems  
as Therapeutic Approaches 

Against PD and Other Diseases

In addition to proteolytic degradation, 
other clearance pathways could repre-
sent potential therapeutic targets. Cell-
mediated clearance pathways including 
endocytosis or phagocytosis have been 
reported to clear extracellular α-syn.17 
Immunization against α-syn can 
improve α-syn pathology, possibly due to 
increased cell-mediated clearance.89,90 As 

Additionally, plasmin in the CNS is physi-
ologically and pathologically important in 
such as neuronal development, synaptic 
plasticity and excitotoxicity through the 
cleaving of extracellular matrix compo-
nents such as fibronectin, laminin and 
MMPs in addition to fibrin.64-66 Plasmin 
cleaves monomeric and further oligomeric 
and fibrillar forms of α-syn irrespective 
of the familial type of point mutation, 
unlike neurosin. However, tPA, uPA and 
thrombin do not cleave α-syn. Plasmin 
also inhibits the intercellular spreading 
of α-syn released from neuronal cells and 
glial activation by extracellular α-syn by 
cleaving the N-terminal region of α-syn 
into small fragments. This suggests that 
the plasmin system in the CNS may 
prevent the progression of PD through 
inhibiting extracellular α-syn’s detri-
mental intercellular spreading and glial 
activation.59

Interestingly, plasmin can also degrade 
several forms of Aβ and block Aβ-induced 
toxicity, which contribute to the progres-
sion of AD,67,68 suggesting that it could 
also act against other neurodegenerative 
diseases besides PD. Overall, proteolytic 
enzymes such as neurosin and plasmin 
which cleave extracellular α-syn appear to 
be potential therapies against PD.

Proteolytic systems against Aβ are 
actively being studied for the treatment of 
AD. Several proteases including neprily-
sin, insulin degrading enzyme and MMPs 
as well as plasmin have been identified 
to cleave Aβ.69-72 Ex vivo gene delivery 
of neprilysin has been reported to reduce 
amyloid plaque burden in AD models.73 
Also, the inhibitor of PAI-1, which inhib-
its tPA activity and further plasmin activ-
ity, augments the activity of the plasmin 
system, thereby reducing the Aβ level and 
restoring memory deficit in AD mod-
els.74 Consequently, several in vitro and 
in vivo studies have implicated amyloid 
degrading enzymes as new therapeutic 
targets against AD (see reviews in refs. 
75–77 for more details). With regard to 
prion disease, cysteine proteases such as 
cathepsin B and L have been reported to 
degrade prions in CD11c+ dendritic cells 
and in GT1-1 neuronal cells.78 Efforts to 
find proteases that can degrade PrPsc and 
further inhibit the amplification of patho-
logic effects of PrPsc are still ongoing.

clearance, proteolytic degradation, chap-
erone-mediated clearance and active/pas-
sive transport out of the brain. Therefore, 
the treatment of PD could be achieved 
through targeting the regulation of α-syn 
release and uptake, or the removal of 
extracellular α-syn by a variety of clear-
ance systems.

Proteolytic clearance is possible using 
any of several proteases that have been 
identified to be able to cleave and degrade 
α-syn: these include neurosin,55 matrix 
metalloproteinases (MMPs),56 calpain,57 
cathepsin D58 and plasmin.59 Among 
them, neurosin, MMPs and plasmin have 
been reported to cleave and degrade extra-
cellular α-syn. Neurosin, a serine protease, 
is preferentially expressed in neurons and 
oligodendrocytes in the brain.55 It was first 
observed to be colocalized in some senile 
plaques in AD patients as well as Lewy 
bodies in PD patients.60 It has also been 
reported to degrade intracellular α-syn, 
but less efficiently A53T α-syn and also 
to inhibit α-syn polymerization.55 Tatebe 
et al. later demonstrated in vitro that 
secreted neurosin degrades extracellular 
α-syn.61 Recently, the viral mediated deliv-
ery of neurosin has been shown to pro-
mote the clearance of α-syn and reduces 
pathology in an α-syn model,62 implying 
that neurosin may be a new therapeutic 
target for PD.

MMPs, particularly MMP-3, have 
also been reported to cleave extracellular 
α-syn.56 Sung et al. demonstrated that 
oxidative injury induces the cleavage of 
extracellular α-syn released from neuro-
nal cells and this is eventually cleaved by 
MMPs. However, the cleavage of α-syn by 
MMP-3 further induces its aggregation,56 
lessens any likely effects on PD of cleaving 
extracellular α-syn by MMPs.

The plasmin system may be a therapeu-
tic target for preventing the intercellular 
spreading of extracellular α-syn. It is one 
of the proteases that can cleave extracel-
lular α-syn.59 Plasmin is an extracellular 
serine protease that is important in fibri-
nolysis. It is derived from its inactive form, 
plasminogen, by tissue type plasminogen 
activator (tPA) or urokinase plasminogen 
activator (uPA).63 Although plasmin is 
synthesized mainly in the liver, it has also 
been detected in the CNS and is mainly 
expressed in neurons and astrocytes. 
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enzymes responsible for the degradation of 
aggregation-prone proteins and efforts to 
find them and so regulate them directly or 
indirectly should aid the elucidation of the 
pathogenesis of many neurodegenerative 
diseases and hence help the development 
of therapeutic strategies of them.
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Concluding Remarks

Several common characteristic of neu-
rodegenerative diseases are coming to be 
known. Precise understanding of these 
diseases’ pathogenesis could aid the devel-
opment of common therapeutic interven-
tions to stop their progression. In this 
sense, the spreading of aggregation-prone 
proteins, particularly cytosolic proteins 
such as α-syn, tau, SOD-1 and polyglu-
tamine expanding proteins, into neigh-
boring cells is potentially important in 
pathogenesis. Furthermore, interventions 
against their spreading could form the 
bases of new treatments. Accordingly, the 
proteolytic clearance system and other 
clearance systems which block the pro-
teins’ spreading and hence their detrimen-
tal effects could serve as good targets for 
treatment. There may be more proteolytic 

a chaperone-mediated clearance pathway, 
HSP70 was reported to reduce extracellu-
lar α-syn oligomer formation and related 
toxicity.91

A variety of clearance pathways of 
Aβ in AD have been actively studied.92 
Microglia and astrocytes have been 
reported to be able to phagocytose Aβ 
and immunization with Aβ was shown to 
promote clearance,93 which are currently 
considered the most effective therapeutic 
targets against AD.94 Clusterin has also 
been reported to bind to Aβ and enhance 
Aβ clearance as a chaperone.93 Passive 
immunization against prion has shown to 
decrease CNS pathology.95 Immunization 
strategies against tau and mutant SOD-1 
could also be used to treat AD and ALS, 
respectively.96-98 However, it remains 
uncertain whether their primary targets 
are cytosolic or extracellular proteins.
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