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Obesity and its related complications have emerged as 
global health problems; however, the pathophysiological 
mechanism of obesity is still not fully understood. In this 
study, C57BL/6J mice were fed a normal (ND) or high-fat 
diet (HFD) for 0, 2, 4, 6, 8, 12, 20, and 24 weeks and the time 
course was systemically analyzed specifically for the he-
patic transcriptome profile. Genes that were differentially 
expressed in the HFD-fed mice were clustered into 49 clus-
ters and further classified into 8 different expression pat-
terns: long-term up-regulated (pattern 1), long-term down-
regulated (pattern 2), early up-regulated (pattern 3), early 
down-regulated (pattern 4), late up-regulated (pattern 5), 
late down-regulated (pattern 6), early up-regulated and late 
down-regulated (pattern 7), and early down-regulated and 
late up-regulated (pattern 8) HFD-responsive genes. Within 
each pattern, genes related with inflammation, insulin re-
sistance, and lipid metabolism were extracted, and then, a 
protein-protein interaction network was generated. The 
pattern specific sub-network was as follows: pattern 1, 
cellular assembly and organization, and immunological di-
sease, pattern 2, lipid metabolism, pattern 3, gene expres-
sion and inflammatory response, pattern 4, cell signaling, 
pattern 5, lipid metabolism, molecular transport, and small 
molecule biochemistry, pattern 6, protein synthesis and 
cell-to cell signaling and interaction and pattern 7, cell-to 
cell signaling, cellular growth and proliferation, and cell 
death. For pattern 8, no significant sub-networks were iden- 
tified. Taken together, this suggests that genes involved in 
regulating gene expression and inflammatory response 
are up-regulated whereas genes involved in lipid metabol-
ism and protein synthesis are down-regulated during diet-
induced obesity development. 
 
 

INTRODUCTION 
 
Obesity is defined as an accumulation of excess body fat in the 
body and its prevalence is rapidly increasing throughout the 
world. Besides physical, social, and psychological disadvan-
tages, obesity can lead to serious health problems including 
insulin resistance (IR), type 2 diabetes mellitus (T2DM), cardi-
ovascular disease (CVD) and certain types of cancers (Haslam 
and James, 2005). Although there are various causes of obesi-
ty including genetic susceptibility, endocrine disorders, medical 
side-effects, psychiatric disorders, or cerebropathy, the main 
etiology of obesity is attributed to a combination of excessive 
energy intake and reduced energy expenditure such as physi-
cal activity (Bleich et al., 2008).  

High fat diet (HFD) has known to induce obesity and related 
complications in rodents and other animals. Particularly, 
C57BL/6J mouse is a well-known animal model used for a diet-
induced obesity (DIO) since this strain develops visceral fat-
ness, IR, hyperinsulinemia and hyperlipidemia those seen in 
humans upon HFD feeding (Lin et al., 2000; Petro et al., 2004; 
Rossmeisl et al., 2003; Surwit et al., 1995; Van Heek et al., 
1997).  

The liver is one of the key organs in the development of ob-
esity and related disorders. Excessive food (energy) consump-
tion increases the supply of oxidizable substrates to the liver 
that are utilized for energy synthesis or for the production of 
biosynthetic compounds. This increases the hepatic content of 
total cholesterol and triglycerides (TG), which eventually leads 
to fatty liver and liver cirrhosis. IR, reduced insulin sensitivity of 
insulin target tissues, also occurs in the liver during obesity 
development. As consequences of IR, the action of insulin such 
as glucose uptake, inhibition of gluconeogenesis, and inhibition 
of lipolysis are all decreased in the liver (Schenk et al., 2008). 
IR also reduces the uptake of circulating lipids and increases 
the hydrolysis of stored TG in adipocytes. Under this condition, 
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adipocytes increase the release of non-esterified fatty acids 
(NEFAs) into the blood, following a reduction of muscle glucose 
uptake and an increase of hepatic glucose production, which 
contribute to a gradual increase of blood glucose levels (Sell et 
al., 2006). Recently, obesity has been referred to as a low-
grade systemic inflammatory disease. Proinflammatory cytokines 
(e.g. Tnfa, Il6, Crp, Resistin, Serpine1) and NEFAs produced in 
adipocytes result in impaired insulin action/endothelial function, 
hyperinsulinemia, glucose intolerance, and other complications 
in both obese animals and humans (Fain, 2006; Fried et al., 
1998; Xu et al., 2003). Especially, high intake of saturated and 
trans-FAs potentiates the promotion of obesity by playing a 
considerable role in modulating lipid metabolism, IR, and in-
flammation (Matsuzawa-Nagata et al., 2008; Rocha and Libby, 
2009). 

With advances in genome-wide microarray technology, it is 
now possible to gain deep insight into the hepatic transcription-
al changes in DIO. The differences in the expression of genes 
involved in lipid metabolism, IR, and inflammation have also 
been studied by cross-sectional microarray analysis in various 
murine DIO models. However, understanding of time-resolved 
gene expression changes during prolonged HFD feeding is of 
crucial importance for developing strategies to prevent and treat 
irreversible disease characteristics. Radonjic et al. studied he-
patic gene expression associated with short and long-term ex-
posure to excess dietary fat during 16 weeks in ApoE3Leiden 
mice (Radonjic et al., 2009). They found that the expression of 
inflammatory/immune pathways was activated in the early 
phase (day 1 to week 1) and was repressed in the late phase 
(week 8 to week 16) of the experimental period. Similarly, a 
time-resolved system analysis of gene expression and metabo-
lite levels in liver, white adipose tissues, and muscles was per-
formed to elucidate the pathogenesis of IR in HFD fed ApoE3 
Leiden mice (Kleemann et al., 2010). IR first manifested in the 
liver (at week 6) and then in white adipose tissue (WAT) (at 
week 12) whereas white skeletal muscles remained insulin-
sensitive. HFD also evoked an early hepatic inflammatory re-
sponse which then gradually declined. Inflammation, however, 
increased over time in WAT and it gradually was suppres-sed 
in skeletal muscles with HFD. Since these studies were under-
taken with unusually HFDs for 12 and 16 weeks in ApoE3L 
transgenic mice, we investigated the changes of temporal he-
patic gene expression with physiologically relevant and pro-
longed (24 weeks) HFD-feeding which compensate potential 
adaptation responses to increased energy intake in C57BL/6J 
mice compared to age-matched normal diet (ND)-fed controls 
(Do et al., 2011). In contrast to previous reports (Kleemann et 
al., 2010; Radonjic et al., 2009), we found that inflammation 
associated genes were elevated consistently over 24 weeks 
and IR with elevated plasma insulin and impaired glucose to-
lerance was observed after 16 weeks of HFD feeding while 
fasting plasma glucose was elevated even after 20 weeks. 
Hepatic lipid accumulation and elevation of plasma total choles-
terol was significant long before IR induction. Although differ-
ences in diet, animals, and duration of experiment gives differ-
ent results, it is clear that genes involved in inflammation, IR, 
and lipid metabolism are most significantly changed by HFD. In 
this study, we therefore just focused on the genes involved in 
inflammation, IR, and lipid metabolism from the past microarray 
analysis data and further analyzed time-dependent transcrip-
tional changes of these genes to develop strategies to prevent 
and treat irreversible disease characteristics. 
 

MATERIALS AND METHODS 

 
Data analysis 
We obtained microarray data from previous studies (Do et al., 
2011) and analyzed time-dependent transcriptional changes of 
genes involved in inflammation, IR, and lipid metabolism as 
shown in Fig. 1. 
 
Clustering of hepatic gene transcripts 
For clustering of hepatic gene transcripts, the Self-Organizing 
Map (SOM) algorithm (Quackenbush, 2001) was applied. We 
used Genowiz (Ocimum Biosolutions, India) with the SOM tool 
to arrange all data samples. 
 
Construction of HFD responsive hepatic gene networks 
HFD responsive hepatic gene networks related to inflammation, 
IR, and lipid metabolism were constructed by the Michigan 
Molecular Interactions (MiMI) plug-in (Gao et al., 2009) for Cy-
toscape (http://www.cytoscape.org). The MiMI plug-in for Cy-
toscape enables one to connect to the MiMI database and 
construct the interactions. We used the protein-protein interac-
tions from the biomolecular interaction network database (BIND) 
(Bader et al., 2003), the database of interacting proteins (DIP) 
(Salwinski et al., 2004), the biological general repository for in-
teraction datasets (BioGRID) (Stark et al., 2011), IntAct (Kerrien 
et al., 2012), the kyoto encyclopedia of genes and genomes 
(KEGG) (Kanehisa et al., 2012), the molecular interaction data-
base (MINT) (Licata et al., 2012), PubMed, and the reactome 
(Croft et al., 2011) in MiMI. 
 
Gene set enrichment analysis 
To identify the biological functions associated with the HFD 
responsive genes over the entire expression patterns, the 
DAVID Functional Annotation Clustering tool (http://david.abcc. 
ncifcrf.gov/) (Huang da et al., 2009a; 2009b) was used. Gene 
set enrichment analysis (GSEA) was performed using Gene 
Ontology (GO) (biological process, molecular function, and 
cellular component) and pathways (BIOCARTA and KEGG 
pathway) according to a False Discovery Rate (FDR) < 5% and 
a Benjamin and Hochberg adjusted p-value < 0.05. 
 
Analysis of networks and pathways 
Analyses of networks, pathways, and their functions were done 
with the Ingenuity Pathway Analysis (IPA; Ingenuity Systems, 
USA) (Viswanathan et al., 2008; Werner, 2008). The gene lists 
containing gene identifiers and corresponding expression val-
ues for each HFD responsive hepatic gene network related to 
inflammation, IR, and lipid metabolism were uploaded to IPA 
and these gene lists were overlaid onto a global molecular 
network developed from information contained in the Ingenuity 
Knowledge Base, a repository of biological interactions and func- 
tional annotations created from millions of individually modeled 
relationships between proteins, genes, complexes, cells, tissues, 
metabolites, drugs, and diseases, and networks and pathways 
were generated and visualized based on the connectivity of the 
genes. The analysis of networks and pathways specified the 
most significant biological functions, canonical pathways, tox-
icological functions and diseases related to the genes in the 
network and pathway and Fischer’s exact test was used to 
calculate a p-value to determine the probability. 
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RESULTS 

 
Statistical analysis of hepatic gene expression changes by  
HFD and clustering of the transcripts 
The changes in HFD-induced hepatic gene expression over 24 
weeks compared to ND were first evaluated at each of the time 
points. By applying a fold change of gene expression and sta-
tistical cutoff with a False Discovery Rate (FDR) < 5%, a Ben-
jamin and Hochberg adjusted p-value < 0.05, and a log fold 
change > 1, we identified 939 and 4,136 differentially expres-
sed genes by HFD, which were up- or down-regulated by fold 
changes and T-test comparison, respectively, across all of the 
time-points (Table 1). 

To classify and group the data based on similar expression 
patterns by function of time, hepatic gene transcripts that were 
differentially expressed in the HFD-fed mice were clustered into 
49 clusters with the SOM algorithm (Fig. 2). The clusters were 
then further classified into 8 expression patterns to identify time-
resolving responses of hepatic gene expression by HFD feed-
ing as follows (Table 2); long-term up-regulated (pattern 1), 

long-term down-regulated (pattern 2), early up-regulated (pat-
tern 3), early down-regulated (pattern 4), late up-regulated (pat-
tern 5), late down-regulated (pattern 6), early up-regulated and 
late down-regulated (pattern 7), and lastly, early down-regu-
lated and late up-regulated (pattern 8) HFD-responsive genes. 
At this point, we determined that 2, 4, 6, and 8 weeks were the 
early stage and the last 4 periods across all of the time-points, 
12, 16, 20, and 24 weeks, were the late stage of obesity devel-
opment. 

 
HFD responsive hepatic gene networks related to  
inflammation, IR, and lipid metabolism 
It is important to see how these genes functionally interact to 
access biological features of the genes. We therefore con-
structed a molecular interaction network with the MiMI plug-in 
for Cytoscape and characterized the functional annotation of 
the network using GO and pathway classification analysis for 
each expression pattern based on a FDR < 5% and a Benjamin 
and Hochberg adjusted p-value < 0.05 (Supplementary data 1). 
The network was, however, too big to analyze the biological  

Fig. 1. Flow chart of experiments and data analysis. 
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Table 1. Number of differentially expressed hepatic gene transcripts per time-point which were up- or down-regulated by fold changes and T-

test comparison in C57BL/6J mice fed high-fat diet during 24 week time-course 

 
Number of DEG based on HFD vs. ND by fold change Number of DEG based on HFD vs. ND by T-test 

(FDR q-value < 0.1) Up Down 

2 week 94 16 202 

4 week 65 35 1 

6 week 93 25 2,298 

8 week 165 30 253 

12 week 64 30 180 

16 week 65 49 1 

20 week 59 40 79 

24week 77 32 1,122 

All time point 682 257 4,136 

Total 939 4,136 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Clusters of hepatic gene transcripts that were differentially expressed in C57BL/6J mice fed a high-fat diet over 24 weeks by Self-

Organizing Map (SOM). x-axis, duration of time; y-axis, log gene change. 

 
 
 
functions. We therefore focused on genes related to inflamma-
tion, IR, and lipid metabolism since these are the three major 
features of obesity. Filtered genes by manual curation included 
65 inflammation-, 6 IR-, and 53 lipid metabolism-related genes 
(Supplementary data 2). In addition, 19 genes related to in-
flammation and lipid metabolism, 17 genes related to IR and 
lipid metabolism, and 793 genes related to inflammation, IR, 
and lipid metabolism were identified. This limited set of HFD 
responsive genes of interest was used for all downstream func-
tional analyses. In addition, to include prior biological know-

ledge, this limited gene set was used for GSEA by the DAVID 
Functional Annotation Clustering tool. 
  As a result of the enriched functions (Supplementary data 3), 
regulation of phosphorylation, positive regulation of response to 
stimulus, activation of immune response, immune system de-
velopment, positive regulation of immune response, positive 
regulation of cell differentiation, and leukocyte activation related 
functions were uniquely enriched in the network of pattern 1. In 
this case, some immune related functions were uniquely ob-
served. In the case of the pattern 2 transcripts network, some 
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Table 2. Expression patterns of high-fat diet responsive hepatic gene clusters 

Pattern No. Expression patterns Clusters 

1 
Long-term up-regulated 

HFD-responsive genes 

C08, C14, C31, C37, C39, 

C41 

2 
Long-term down-regulated 

HFD-responsive genes 

C15, C27, C28, C42 

 

3 
Early up-regulated 

HFD-responsive genes 

C01*, C04, C18, C22, C23*, 

C38* 

4 
Early down-regulated 

HFD-responsive genes 

C07
#
, C17, C29

#
, C34, C40

#
, 

C43, C44
#
, C47, C48 

5 
Late up-regulated 

HFD-responsive genes 

C02, C03, C07
#
, C13, C19, 

C29
#
, C35, C40

#
, C44

#
 

6 
Late down-regulated 

HFD-responsive genes 

C01*, C21, C23*, C32, C38*, 

C49 

7 
Early up-regulated and late down-regulated 

HFD-responsive genes 

C01*, C23*, C38*
 

 

8 
Early down-regulated and late up-regulated 

HFD-responsive genes 

C07
#
, C29

#
, C40

#
, C44

# 

 

*Pattern 7 (early up-regulated and late down-regulated HFD-responsive genes) also clustered into pattern 3 (early up-regulated HFD-responsive genes) 
and pattern 6 (late down-regulated HFD-responsive genes). 

#Pattern 8 (early down-regulated and late up-regulated HFD-responsive genes) also clustered into pattern 4 (early down-regulated HFD-responsive 
genes) and pattern 5 (late up-regulated HFD-responsive genes). 

 
 
 
metabolic functions were uniquely enriched, such as hexose ca-
tabolic process, glucose catabolic process, glycolysis, and glu-
cose metabolic process. Some signal transduction related func-
tions, such as regulation of Ras protein signal transduction and 
regulation of small GTPase mediated signal transduction, were 
uniquely enriched in the pattern3 transcripts network. Ras pro-
tein signal transduction was uniquely enriched in the pattern 5 
transcripts network and cellular response to stress was unique-
ly enriched in the pattern 6 transcripts network. Positive regula-
tion of apoptosis was uniquely enriched in the pattern 7 tran-
scripts network and coenzyme metabolic process was uniquely 
enriched in the pattern 8 transcripts network. 

Supplementary data 4 shows the enriched pathways of the 
HFD responsive hepatic gene transcripts networks related with 
inflammation, IR, and lipid metabolism. Thrombin signaling and 
protease-activated receptors, phospholipase C signaling path-
way, activation of Src by protein-tyrosine phosphatase alpha, 
and fibrinolysis pathway from BIOCARTA and complement and 
coagulation cascades, leukocyte transendothelial migration, 
and TGF-beta signaling pathway from KEGG were uniquely 
enriched in the network of pattern 1. In the case of the pattern 2 
transcripts network, regulation of BAD phosphorylation from 
BIOCARTA and glycolysis/gluconeogenesis, type II diabetes 
mellitus, and PPAR signaling pathway from KEGG were unique-
ly enriched. In this case, some metabolic and metabolic disord-
er related pathways were uniquely observed. CTL mediated im-
mune response against target cells, signaling pathway from G-
protein families, and NF-kB signaling pathway from BIOCARTA 
were uniquely enriched in the pattern 3 transcripts network and 
TGF beta signaling pathway from BIOCARTA was uniquely 
enriched in the pattern 4 transcripts network. In the case of the 
pattern 7 transcripts network, IL2 signaling pathway from 
BIOCARTA was uniquely enriched. 
 
Network analysis of HFD-responsive genes related to  
inflammation, IR, and lipid metabolism 
HFD responsive hepatic gene networks related to inflammation, 

IR, and lipid metabolism were then re-constructed for each 
expression pattern (Supplementary data 5), and then, to further 
investigate the biological connectivity between the HFD res-
ponsive hepatic genes, the set of genes for each expression 
pattern was used as an input for the network analysis within the 
IPA suite. The top 5 networks with the highest significance 
score and their associated biological functions are listed in Ta-
ble 3. To restrict the size and facilitate the clarity of the resulting 
network, we focused on the most relevant sub-network asso-
ciated with HFD-induced obesity. 

The sub-network for pattern 1 consisted of genes related to 
cellular assembly and organization, cancer, and immunological 
disease (Fig. 3A). Especially, the expression of Gdi and Hcls1 
was up-regulated throughout the entire experimental period. 
The analysis identified that the sub-network for pattern 2 con-
sisted of genes related to cellular assembly and organization, 
cellular function and maintenance, and lipid metabolism (Fig. 
3B). Acadl, Acd, Apoa4, Bag4, Cyb5r3, Cyp8b1, and Ppargc1a 
were significantly down-regulated from weeks 2 to 24 in HFD 
fed mice compared to the ND fed controls. In this sub-network, 
the results show that several major regulators of the cellular 
response to HFD appeared as network hub nodes. Pparg is a 
regulator of lipid, fatty acid, and cholesterol metabolism and 
Nfkb is a regulator of the immune response. The sub-network 
for pattern 3 consisted of genes related to gene expression, 
antimicrobial response, and inflammatory response. As shown 
in Fig. 3C, Irak1, Irf7, Myd88, and Vps29 were early up-regu- 
lated in HFD fed mice. The results show that Ikb and Ikb family 
member Ikbkb and Nfkb modulator were observed as the net-
work hub nodes. In the case of the pattern 4, the sub-network 
consisted of genes related to cell signaling, cellular assembly 
and organization, and cellular function and maintenance (Fig. 
3D). Rhot2 and Sh3gl1 were down-regulated by week 4 in HFD- 
fed mice. In the sub-network for pattern 5, the sub-network 
consisted of genes related to lipid metabolism, molecular trans-
port, and small molecule biochemistry (Fig. 3E). Acad9, Acads, 
Acadvl, Apob, and Got2 were up-regulated after 12 weeks of
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Fig. 3. Significant sub-network of unique

protein-protein interactions network for each

HFD responsive hepatic gene expression

clusters related with inflammation, IR, and

lipid metabolism. (A) Significant sub-net-

work of unique protein-protein interactions

network for pattern 1 (long-term up-regula-

ted HFD-responsive genes) associated

with cellular assembly and organization,

cancer, and immunological disease. (B)

Significant sub-network of unique protein-

protein interactions network for pattern 2

(long-term down-regulated HFD-responsive

genes) associated with cellular assembly

and organization, cellular function and main-

tenance, and lipid metabolism. (C) Signifi-

cant sub-network of unique protein-protein

interactions network for pattern 3 (early up-

regulated HFD-responsive HFD-respon-

sive genes) associated with gene expres-

sion, antimicrobial response, and inflam-

matory response. (D) Significant sub-net-

work of unique protein-protein interactions

network for pattern 4 (early down-regulated

HFD-responsive genes) associated with cell

signalling, cellular assembly and organiza-

tion, and cellular function and mainten-

ance. (E) Significant sub-network of unique

protein-protein interactions network for

pattern 5 (late up-regulated HFD-respon-

sive genes) associated with lipid metabol-

ism, molecular transport, and small mole-

cule biochemistry. (F) Significant sub-

network of unique protein-protein interac-

tions network for pattern 6 (late down-

regulated HFD-responsive genes) asso-

ciated with RNA post-transcriptional mod-

ification, protein synthesis, and cell-to-cell

signalling and interaction. (G) Significant

sub-network of unique protein-protein inter-

actions network for pattern 7 (early up-

regulated and late down-regulated HFD-

responsive genes) associated with cell-to-

cell signalling and interaction, cellular growth

and proliferation, and cell death. 

 

(Continued) 
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HFD feeding. Particularly interesting is the sub-network con-
sisted of major regulators of cellular response to HFD; Pparg is 
a regulator of lipid, fatty acid, and cholesterol metabolism and 
Nfkb is a regulator of the immune response, appearing as the 
network hub nodes similar to the sub-network for pattern 2. 
Figure 3F shows that the sub-network for pattern 6 consisted of 
genes related to RNA post-transcriptional modification, protein 
synthesis, and cell-to-cell signaling and interaction. Eef1b2, 
Rpsa, and Rps3a were down-regulated after 12 weeks of HFD 
feeding. Finally, the sub-network for pattern 7 consisted of genes 
related to cell-to-cell signaling and interaction, cellular growth 
and proliferation, and cell death (Fig. 3G). Rfc2, Rpl29, and Rpsa 
were up-regulated until 8 weeks of HFD feeding, and then, the 
expression was down-regulated after that. The expression of 
Txnip was, however, up-regulated by week 16 in HFD-fed mice 
and then down-regulated. Although this does not exactly fit into 
out classification (by 8 weeks as an early stage of obesity de-
velopment), we included Txnip in pattern 7 since we more fo-
cused on turn-around of expression change. In the case of 
pattern 8, no significant sub-networks were identified from the 
analysis of networks and pathways using the IPA suite. 

The top biological functions, canonical pathways, and toxico-
logical functions associated with the selected sub-networks are 
shown in Supplementary data 6, 7, and 8. 
 
DISCUSSION 

 
Excess dietary fat intake without noticeable physical activity is 
one of the major causes of obesity. Since obesity and its detri-

mental complications, including IR, T2DM, CVD, and certain 
types of cancers, progress chronically, it is of crucial importance 
to dissect the temporal changes of gene expression during 
prolonged HFD feeding to develop a prevention or treatment 
strategy for the diseases. 

In this study, we fed C57BL/6J mice with either ND or HFD 
for 0, 2, 4, 6, 8, 12, 20, and 24 weeks, and the time course was 
systemically analyzed specifically for the hepatic transcriptome 
profile. This animal model shares many similarities with human 
obesity, IR, and T2DM when fed HFD over a prolonged period 
of time (Winzell and Ahren, 2004). It is generally known that 
C57BL/6J mice become obese and develop IR after continuous 
feeding of HFD for 8-10 weeks (Surwit et al., 1995; 1998). 

The global changes in the hepatic transcriptome in gene 
clustering revealed that noticeable genetic responses to excess 
dietary fat proceeded in two phases: early and late. We there-
fore classified 49 clusters into 8 different expression patterns 
according to the expression changes in these two phases and 
focused on genes involved in inflammation, IR, and lipid meta- 
bolism which are three major features of DIO. IPA analysis of a 
comprehensive PPI network with the genes involved in inflam-
mation, IR, and lipid metabolism for each expression pattern 
retrieved the top 5 sub-networks and we further analyzed one 
of the sub-networks which appears to be the most significant to 
obesity development. 

For pattern 1, long-term up-regulated HFD responsive genes, 
Gdi and Hcls1 were up-regulated during the 24 weeks of HFD 
feeding compared to the ND fed controls in the sub-network of 
PPI interactions associated with cellular assembly and organi- 

(Continued) 
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Table 3. Associated network functions of unique protein-protein interactions network for each HFD responsive hepatic gene expression clus-

ters related with inflammation, IR, and lipid metabolism 

Expression patterns Associated network functions 

Pattern 1 

(Long-term up-regulated) 

 

 

 

Drug metabolism, glutathione depletion in liver, hematological system development and function 

DNA replication, recombination, and repair, cellular assembly and organization, cell cycle 

Molecular transport, RNA trafficking, connective tissue development and function 

Cellular assembly and organization, cancer, immunological disease 

Gene expression, RNA post-transcriptional modification, cell signaling 

Pattern 2 

(Long-term down-regulated) 

 

 

 

Gene expression, RNA post-transcriptional modification, protein synthesis 

Cardiovascular disease, genetic disorder, neurological disease 

Genetic disorder, metabolic disease, cancer 

Cellular assembly and organization, cellular function and maintenance, lipid metabolism 

Lipid metabolism, small molecule biochemistry, vitamin and mineral metabolism 

Pattern 3 

(Early up-regulated) 

 

 

 

DNA replication, recombination, and repair, cancer, infection mechanism 

Gene expression, antigen presentation, cardiovascular system development and function 

Cell morphology, cell death, cell-mediated immune response 

Gene expression, antimicrobial response, inflammatory response 

Cell signaling, cancer, reproductive system disease 

Pattern 4 

(Early down-regulated) 

 

 

 

Cardiovascular disease, genetic disorder, neurological disease 

DNA replication, recombination, and repair, energy production, nucleic acid metabolism 

Cell signaling, cellular assembly and organization, cellular function and maintenance 

Gene expression, RNA post-transcriptional modification, inflammatory response 

RNA post-transcriptional modification, protein synthesis, gene expression 

Pattern 5 

(Late up-regulated) 

 

 

 

DNA replication, recombination, and repair, cellular assembly and organization, cell cycle 

Lipid metabolism, molecular transport, small molecule biochemistry 

DNA replication, recombination, and repair, nucleic acid metabolism, small molecule biochemistry 

Cellular development, cell morphology, skeletal and muscular system development and function 

Cardiovascular disease, cell cycle, cancer 

Pattern 6 

(Late down-regulated) 

 

 

 

DNA replication, recombination, and repair, energy production, nucleic acid metabolism 

Gene expression, RNA post-transcriptional modification, infection mechanism 

RNA post-transcriptional modification, protein synthesis, cell-to-cell signaling and interaction 

Cellular function and maintenance, molecular transport, cell morphology 

RNA post-transcriptional modification, DNA replication, recombination, and repair, molecular transport

Pattern 7  

(Early up- and late-regulated) 
Cell-to-cell signaling and interaction, cellular growth and proliferation, cell death 

Pattern 8  

(Early down- and late-regulated) 
- 

 

 
 
 
zation, cancer, and immunological disease. It has been shown 
that Gdi1 and Gdi2 exhibit a similar distribution to Slc2a4 and 
Rab10 at the trans-Golgi network in insulin sensitive tissues 
including adipocytes and muscles (Chen et al., 2009). Moreo-
ver, overexpression of either Gdi or Gdi retention on adipocyte 
membranes strongly inhibits insulin-stimulated translocation of 
Slc2a4 onto the plasma membrane in 3T3-L1 adipocytes (Chen 
et al., 2009; Chinni et al., 1998). This suggests that increases of 
Gdi expression is one of the causes of HFD-induced IR in the 
liver. 

For pattern 2, long-term down-regulated HFD responsive 
genes, Acadl, Acd, Apoa4, Bag4, Cyb5r3, Cyp8b1, and Ppargc1a 
were significantly down-regulated from week 2 to 24 in HFD fed 
mice compared to the ND fed controls in the sub-network of 
PPI interactions associated with cellular assembly and organi-
zation, cellular function and maintenance, and lipid metabolism. 
Acadl catalyzes the first step of fatty acid β-oxidation in the 
mitochondria. An Acadl knockout mice study showed that a 
deficiency in the Acadl gene caused a fatty liver and hepatic IR 
in mice (Zhang et al., 2007). Apoa4 is an apolipoprotein com-

ponent of chylomicron particles and modulates the efficiency of 
enterocyte and hepatic transcellular lipid transport. Its synthesis 
is confined to the intestine but hepatic synthesis also occurs in 
mice and rats. Apoa4 gene deletion impaired the ability of 
Apoa4 knockout mice to gain weight and increased adipose 
tissue mass (Simon et al., 2011). Both Cyb5r3 and Cyp8b1 
(also known as sterol 12-alpha-hydroxylase) are endoplasmic 
reticulum membrane proteins and function in cholesterol bio-
synthesis and drug metabolism. A study on the Lean and Fat 
polygenic obesity mouse models developed from the same 
base population by long-term (over 60 generations) divergent 
selection for low or high body fat % revealed that Cyp8b1 gene 
expression was higher in the obesity-resistance Lean line than 
the obesity-susceptible Fat line (Simoncic et al., 2011). Ppargc1a 
is a transcription coactivator interacting with a broad range of 
transcription factors that are involved in adaptive thermogene-
sis, mitochondrial biogenesis, glucose/fatty acid metabolism, 
peripheral circadian clock, fiber type switching in skeletal mus-
cle, and heart development (Liang and Ward, 2006; Liu and Lin, 
2011). The expression of Ppargc1a in the liver is induced by 
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Table 4. Summary for protein-protein interactions network that common between each HFD responsive gene transcripts network and unique 

protein-protein interactions network for each HFD responsive gene transcripts network. 

Expression patterns Significant genes Significant molecular and cellular functions

Pattern 1 

(Long-term up-regulated) 

 

Gdi, Hcls1 

 

 

Cellular assembly & organization 

Cancer 

Immunological disease 

Pattern 2 

(Long-term down-regulated) 

 

Acadl, Acd, Apoa4, Bag4, Cyb5r3, Cyp8b1, Ppargc1a 

 

 

Lipid metabolism (cholesterol synthesis) 

Cellular assembly & organization 

Cellular function & maintenance 

Pattern 3 

(Early up-regulated) 

 

Irak1, Irf7, Myd88, Vps29 

 

 

Inflammatory & immunity 

Gene expression 

Antimicrobial response 

Pattern 4 

(Early down-regulated) 

 

Rhot2, Sh3gl1 

 

 

Cell signalling 

Cellular assembly & organization 

Cellular function & maintenance 

Pattern 5 

(Late up-regulated) 

 

Acad9, Acads, Acadvl, Apob, Got2 

 

 

Lipid metabolism (FA β-oxidation) 

Nuclear transport 

Small molecule biochemistry 

Pattern 6 

(Late down-regulated) 

 

Eef1b2, Rpsa, Rps3a 

 

 

Protein synthesis 

RNA post-transcriptional modification 

Cell-to-cell signalling & interaction 

Pattern 7 

(Early up- and late-regulated) 

 

 

Rfc2, Rpl29, Rpsa, Txnip 

 

 

 

Cellular energy production 

Protein synthesis 

Cell-to-cell signalling & interaction 

Cellular growth & proliferation 

Pattern 8  

(Early down- and late-regulated) 
- - 

 

 
 
starvation and regulates fasting adaptation, including gluco-
neogenesis, fatty acid β-oxidation, ketogenesis, heme biosyn-
thesis, and bile acid homeostasis (Yoon et al., 2001). In accor-
dance with this, forced overexpression of Ppargc1a in primary 
hepatocytes drove gluconeogenic gene expression (Yoon et al., 
2001) whereas a knockdown of Ppargc1a by short interfering 
RNA in the mouse liver significantly reduced Pepck and G-6-
Pase (Koo et al., 2004). Ppargc1a knockout mice also exhibited 
fasting hypoglycemia due to impaired gluconeogenic gene 
expression (Leone et al., 2005; Lin et al., 2004). In contrast, 
Ppargc1a is expressed at very low levels in the liver under fed 
conditions (Puigserver et al., 1998) which can lead to decree-
sed lipid oxidation, IR, obesity, and T2DM (Miura et al., 2003). 

For pattern 3, early up-regulated HFD responsive genes, 
Irak1, Irf7, Myd88, and Vps29 were up-regulated from 2 to 8 
weeks of HFD feeding in the sub-network of PPI interactions 
associated with gene expression, antimicrobial response, and 
inflammatory response. Irak1 plays a key role in the LPS-
mediated Tlr4 pathway (Singh and Li, 2012). Lack of Irak1 
caused significantly lower lipid peroxidation and nitrite levels, as 
well as pro-inflammatory mediators (Singh and Li, 2012). Leptin 
increases the expression level of Irak1. Macrophages that lack 
Irak1 show a significantly lower expression of Il6 following LPS 
or LPS plus leptin stimulation (Vaughan and Li, 2010). On the 
other hand, it has been shown that mouse Pelle-like kinase 
(mPLK, homolog of human Irak1) directly phosphorylates Irs1 
at Ser 24 which degrades Irs1 and can lead to IR. The activity 
is in fact increased by Tnfa or Il1 treatment of primary adipose 
cells (Kim et al., 2005). This suggests a cross-talk between 
inflammation and IR. Myd88 is a universal adapter protein used 

by all Tall like receptors (TLRs) except for Tlr3 and Il1 receptor 
signaling, which is involved in the activation of inflammatory 
pathways. Central nervous system-restricted Myd88 deficient 
mice are protected from HFD-induced weight gain and leptin 
resistance (Kleinridders et al., 2009) while Yokoyama et al. 
(2012) recently found that HFD-fed Myd88 deficient mice exhi-
bited a dramatic increase of Stearoyl-CoA desaturase 1 (Scd1) 
which is a rate-limiting enzyme in monounsaturated fatty acid 
biosynthesis in the liver and a severe diabetic phenotype. 

For pattern 4, early down-regulated HFD responsive genes, 
cell signaling related genes including Rhot2 and Sh3gl1 were 
down-regulated by week 4 in HFD-fed mice. 

For pattern 5, late up-regulated HFD responsive genes, Acad9, 
Acads, Acadvl, Apob, and Got2, were up-regulated after 12 
weeks of HFD feeding in the sub-network of PPI interactions 
associated with lipid metabolism, molecular transport, and 
small molecule biochemistry. Acads function to catalyze the 
initial step of FA β-oxidation in the mitochondria and are cate-
gorized into short-, medium-, or long-chain Acads based on 
their specificity for the chain length of the target FAs. Acad9 is a 
novel Acad that is highly homologous to human Acadvl and has 
maximal activity with long-chain unsaturated acyl-CoAs as the 
substrate including C16:1-, C18:1-, C18:2-, and C22:6-CoA. In 
general, decreased mitochondrial FA oxidation has been impli-
cated in T2DM and obesity; paradoxically however, Acadvl 
deficient mice were protected from HFD-induced obesity and 
insulin resistance (Zhang et al., 2010). Interestingly, either lean 
or obese DIO rats fed a low-fat diet or HFD, respectively, showed 
reduced liver mRNA expression of Acadvl (Ji and Friedman, 
2007). The Apob gene encodes two isoforms of Apob proteins, 
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Apob48 and Apob100. The first is synthesized in the small 
intestine and is the primary apolipoprotein of the chylomicrons. 
The latter is synthesized in the liver and is the main apolipo-
protein of the low-density lipoproteins (LDL). Especially Apob100 
in LDL acts as a ligand for LDL receptors and transports plas-
ma cholesterol to the liver and other tissue cells, which can 
cause a fatty liver, atherosclerosis, and heart disease. An asso-
ciation between hypercholesterolemia and increased Apob 
protein levels has been well established (Gaffney et al., 2002; 
Veerkamp et al., 2002). Apob is also an apolipoprotein in very 
low density of lipoprotein (VLDL) which encapsulates TGs and 
cholesterol into circulation from the liver. Therefore, the inhibi-
tion of Apob by siRNA or gene targeting oligonucleotide can 
induce liver steatosis. In fact, one of ten patients administered 
mipomersen, an antisense APOB synthesis inhibitor, devel-
oped mild steatosis (Visser et al., 2010). In addition, mice har-
boring a genetic defect of ApoB exhibited hepatic TG accumu-
lation (Lin et al., 2002). 

For pattern 6, late down-regulated HFD responsive genes, 
protein synthesis related genes including Eef1b2, Rpsa, and 
Rps3a were down-regulated after 12 weeks of HFD feeding. 

For pattern 7, early-up and late down-regulated HFD respon-
sive genes, a significant sub-network of PPI interactions was 
associated with cell-to-cell signaling and interaction, cellular 
growth and proliferation, and cell death. Rfc2, Rpl29, and Rpsa 
were up-regulated until 8 weeks of HFD feeding and their ex-
pression was down-regulated thereafter. The expression of 
Txnip was up-regulated by 16 weeks in HFD-fed mice and then 
down-regulated. Txnip is expressed in various tissues including 
the pancreas, hypothalamus, and adipose tissues and plays an 
important role in nutrient sensing and in the regulation of ener-
gy metabolism. Glucose and diabetes upregulate β-cell Txnip 
expression and Txnip overexpression induces β-cell apoptosis. 
In contrast, a Txnip knockout or nonsense mutation promotes 
β-cell survival and prevents streptozotocin- and obesity-induced 
diabetes (Chen et al., 2008; Xu et al., 2012). Hyperglycemic 
ob/ob mice also expressed more Txnip in adipose tissue com-
pared to wild-type mice (Koenen et al., 2011) while the reduc-
tion of Txnip expression in ob/ob mice dramatically improved 
hyperglycemia and glucose intolerance (Yoshihara et al., 2010). 
Moreover, these mice exhibited enhanced insulin sensitivity in 
both adipose tissue and skeletal muscles (Chutkow et al., 2010; 
Yoshihara et al., 2010). Txnip expression in mediobasal hypo-
thalamus was induced by acute nutrient excess and in mouse 
models of obesity and diabetes (Blouet and Schwartz, 2011). 
Down-regulation of this Txnip expression, however, prevented 
DIO and IR. Accordingly, it is thought that early up-regulation of 
Txnip in our study reflects sensing of nutrient excess and IR 
while late down-regulation of Txnip is a result of compensation 
for β-cell disruption. 

In summary, inflammation and immunity related gene ex-
pression was early up-regulated and the increased expression 
lasted throughout the experiment (Table 4). Lipid metabolism, 
especially cholesterol synthesis, related gene expression was 
down-regulated throughout the experimental period. However, 
genes involved in FA β-oxidation was late up-regulated. Genes 
involved in ATP synthesis was up-regulated at the early stage 
of obesity development while protein synthesis associated 
genes were down-regulated at the later time points. For the 
identified significant genes in each expression pattern, it cer-
tainly will be necessary to verify the expression of the genes 
and to further study the functional significance during DIO de-
velopment. Nevertheless, the presented research findings pro-
vide a way to use high-throughput dataset analyses to generate 

testable hypotheses on the development of DIO prevention 
strategies. 
 
Note: Supplementary information is available on the Molecules 
and Cells website (www.molcells.org). 
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