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Several studies have sought systematically to identify protein subcellular locations, but an even larger task is to map which
of these proteins conditionally relocates in disease (the mislocalizome). Here, we report an integrative computational
framework for mapping conditional location and mislocation of proteins on a proteome-wide scale, called a conditional
location predictor (CoLP). Using CoLP, we mapped the locations of over 10,000 proteins in normal human brain and in
glioma. The prediction showed 0.9 accuracy using 100 location tests of 20 randomly selected proteins. Of the 10,000
proteins, over 150 have a strong likelihood of mislocation under glioma, which is striking considering that few mislocation
events have been identified in this disease previously. Using immunofluorescence and Western blotting in both primary
cells and tissues, we successfully experimentally confirmed 15 mislocations. The most common type of mislocation occurs
between the endoplasmic reticulum and the nucleus; for example, for RNF138, TLX3, and NFRKB. In particular, we found
that the gene for the mislocating protein GFRA4 had a nonsynonymous point mutation in exon 2. Moreover, redirection
of GFRA4 to its normal location, the plasma membrane, led to marked reductions in phospho-STAT3 and proliferation of
glioma cells. This framework has the potential to track changes in protein location in many human diseases.

[Supplemental material is available for this article.]

Protein mislocalization or mislocation, a change in the subcellular

location(s) of a protein across comparable conditions, is funda-

mental to cell function and regulatory control in disease (Munkres

et al. 1970; Reich and Liu 2006). Protein location can be governed by

signal peptides, which direct the cellular transport machinery to

convey proteins to the specific organelle(s) in which they are func-

tional. It is also an important regulatory mechanism, as signal pep-

tides can be masked or modified by carrier proteins that recognize

a particular pattern of post-translational modifications. For example,

STAT3 (signal transducer and activator of transcription 3) is phos-

phorylated by various cytokines and growth signals, resulting in its

relocation to the nucleus, where it serves as a strong DNA-binding

transcriptional activator (Reich and Liu 2006). Inappropriate phos-

phorylation and nuclear relocation of STAT3 promotes oncogenesis

through abnormal cell cycle progression, angiogenesis, and in-

vasion of tissue (Reich and Liu 2006). Changes in protein location

are also associated with a host of genetic disorders. For instance, in

Zellweger syndrome, mislocation of peroxisomal proteins leads to

dysfunctional fatty acid oxidation (Dodt et al. 1995).

In model organisms, the location of proteins can be visualized

systematically by fusion of each open reading frame to the gene en-

coding green fluorescent protein (GFP), either through transposon

mutagenesis or polymerase chain reaction (PCR) tagging (Ross-

Macdonald et al. 1999; Huh et al. 2003). In humans and other

mammals, protein tagging is challenging, but immunolabeling can

be used when suitable antibodies are available (Uhlen et al. 2010).

Another common technique has been to fractionate the cell into

different subcellular organelles and to analyze the protein content of

each by tandem mass spectrometry (Gilchrist et al. 2006). Most of

these approaches can be applied to multiple conditions or time points

to identify protein mislocation events, although such dynamic mea-

surements have limitations in the proteome-wide discovery of mis-

location (Wickner and Schekman 2005; Reich and Liu 2006).

In addition to experimental approaches, a considerable num-

ber of methods have been developed for computationally pre-

dicting the location of proteins. Protein location prediction is

a type of functional annotation and, as such, implements the

principle of ‘‘guilt-by-association,’’ whereby the features of a target

protein are matched to features of proteins whose annotations are

known. The first features used for location prediction were based

on protein sequences or structural characteristics (Wilson et al.

2000; Mott et al. 2002; Gardy et al. 2003; Bhasin and Raghava

2004; Scott et al. 2004; Chou and Cai 2005; Lee et al. 2006; Horton

et al. 2007; Shatkay et al. 2007) and were later supplemented with

gene-expression data, gene-deletion profiling, and experimental
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phenotypes (Chen and Xu 2004; Karaoz et al. 2004; Obozinski

et al. 2008; Pena-Castillo et al. 2008). Most recently, large-scale

protein–protein interaction or metabolic networks (Lee et al. 2008,

2010; Mintz-Oron et al. 2009; Jiang and Wu 2012) have been used

in order to significantly increase the accuracy of location predic-

tion, based on the principle that proteins with similar subcellular

locations are likely to interact. However, these methods are limited

in that they cannot identify location changes across diverse cell

states or environmental conditions.

Given these experimental and bioinformatic advances, a

compelling question is whether it would be feasible to mount

a large-scale proteomics effort to identify all protein mislocation

events across a spectrum of diseases. The essential challenges are

several: (1) Identification of human protein locations is limited

by the available antibodies; (2) most experimental methods fall

very short of complete proteome coverage for a particular con-

dition; and (3) a brute-force experimental survey of many con-

ditions could be costly in reagents and time.

Here, we develop a computational framework for mapping

conditional location and mislocation of proteins on a proteome-wide

scale. Dynamic context is achieved through conditional network

neighborhoods, in which expression profiles gathered for conditions

of interest are projected onto protein–protein interaction networks.

As proof-of-principle, we use this approach to develop a proteome-

wide map of protein locations during the progression of glioma.

From the conditional locations, we identify over 150 proteins that

likely mislocate in glioma, and we observe that these events can be

validated by immunofluorescent imaging and Western blot analysis

with a very high rate of success. The validated mislocations lead to

the hypothesis that GDNF family receptor alpha 4 (GFRA4) and

persephin (PSPN), which normally interact at the plasma membrane

with the product of the RET proto-oncogene (RET), are mislocated

in glioma, leading to their accumulation in the endoplasmic re-

ticulum (ER). This hypothesis is further supported by the additional

finding that artificial redirection of GFRA4 to the plasma membrane

results in a dramatic decrease in proliferation of glioma cells.

Results

Proteome-wide discovery of conditional location
and mislocation of proteins

To predict conditional location and mislocation of proteins, we

used a network-based approach that integrates proteome-wide

sequences, chemical properties, gene ontology (GO) annotations,

expression profiles, and well-known protein interaction databases

(Fig. 1; Table 1). To generate features for location prediction, we

adopted our previous approach that integrates three major types of

information as indicators of protein location (S, N, and L) (Fig. 1A;

Supplemental Fig. S1; Lee et al. 2008, 2010). S features capture static

characteristics of a single protein including its primary amino acid

sequence, its chemical properties, known structural motifs, and

functional annotations. These S features have been widely used in

many studies and show relatively good performance (Lee et al.

2006). N and L features describe the neighbors of the protein in

a protein-interaction network: N summarizes the neighbors’

static (S) features, while L represents their known locations when

available. The rationale for N and L is that co-occurrence of se-

quence, structure, or function, including location, in a protein

and its interacting partners has been shown to be useful in-

formation for location prediction (Lee et al. 2008, 2010). Instead

of using all the available features, we selected a feasible combi-

nation for each distinct subcellular location using a divide-and-

conquer k nearest neighbor (DC-kNN) method (Lee et al. 2008).

Figure 1. Proteome-wide prediction of protein mislocation. (A) A protein is described by its sequence, chemical properties, motifs, and functions (single
protein features) together with a description of its network neighborhood (capturing the features of its neighbors and their subcellular locations, if known).
The best combination of features for each location is selected using a DC-kNN classifier. (B) Condition-dependent dynamic network features are generated
by assigning different weights to each neighbor of a protein, depending on their similarity in gene expression profiles. (C ) Selected features from A are
combined with condition-dependent networks from B to compute a CLM for the protein, listing the quantitative possibility that the protein is in each
location under each condition. (D) Mislocations are identified by calculating differences in degrees of possibility across conditions.
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A dynamic context for condition-dependent (or conditional)

location is achieved through conditional network neighborhoods,

in which expression profiles gathered for conditions of interest are

projected onto protein–protein interaction networks (Fig. 1B). For

each condition and study, each interaction was assigned a func-

tional ‘‘coherence’’ score proportional to both expression level and

the correlation between interacting protein pairs (see Methods).

The conditional coherence scores under distinct conditions lead to

conditional network features, resulting in a conditional location

map (CLM) with degrees of possibility assigned to individual lo-

cations under distinct conditions (Fig. 1C). Finally, proteins that

have very different degrees of possibility across different condi-

tions indicate potential mislocation events (Fig. 1D). The use of

coherence as a metric is motivated by the observation that proteins

are more likely to share the same location if they are known to

interact and their expression is highly correlated (Fig. 2A). This is

further supported by the improved recovery of known locations

when the coexpressed network is used together with protein in-

teractions (Fig. 2B). Coexpressed protein pairs also provide insight

into physical interactions, especially when coexpressed pairs com-

mon to multiple studies are considered (Fig. 2C).

Proteome-wide discovery of glioma stage-specific protein location

Before mapping conditional protein locations and mislocation

events in human glioma, we first selected a feasible feature set for

each location using a DC-kNN classifier. For protein, we used 4570

human proteins that have GO annotations and sequence in-

formation in the Universal Protein Resource (UniProt) database

(Table 1B). We could map the 5252 locations of the proteins using

GO-location mappings. For a human protein–protein interaction

network, we used the pooled interactions from several well-known

databases and recent studies (Table 1C). Since network features

generated from network neighbors up to distance 2 were also

useful in location prediction (Supplemental Fig. S2), we applied

a forward selection that chose feature sets of high predictive power

from the pool of features of the single protein and the network.

During the feature-set selection, we used the common measure

of area-under-the-receiver-operator-characteristic curve (AUC) to

rank the predictive power of features and also to evaluate the

performance of the resulting classifiers with a leave-two-out cross

validation (LTOCV) scheme (see Methods). We observed that

selecting feasible feature sets per location using the single protein

and network features resulted in a dramatic increase in perfor-

mance (0.93 AUC for the 13 locations) (Fig. 2D; Supplemental Fig.

S3). Among the prepared features, the network features derived

from the first neighbors’ protein features were more useful than

were any others, but many single-protein features were also se-

lected in the final classifiers for location prediction (Fig. 2E).

Next, to predict conditional locations and mislocation events

in human glioma, we downloaded gene expression profiles ob-

tained for brain tissue under three different conditions—normal

brain, low-grade glioma, and high-grade glioma (Table 1D). Because

of technical noise in the microarray data, we downloaded and

used multiple series of gene-expression profiles even for a single

condition. These profiles included 82, 23, and 134 tissue samples,

respectively (Khatua et al. 2003; Liang et al. 2007; Lockstone et al.

2007; Marucci et al. 2008; Costa et al. 2010). The expression

profiles of proteins in normal brain were clearly separable from

those in low- and high-grade glioma (Supplemental Fig. S4). In

Table 1. Sources of evidence for prediction of conditional subcellular location

(A) Static protein features
Feature Description

Sequences UniProt
Chemical properties Hydrophobicity, hydrophilicity, and side-chain mass
Motifs InterPro
Functions InterPro and GO

(B) Known subcellular locations
of proteins

Source Locations (Abbreviation; GO term; number of location-mapped proteins) Proteins

Gene Ontology (GO) actin (AT; GO:0015629; 155), cell cortex (CC; GO:0005938; 41), centrosome
(CT; GO:0005813; 56), cytosol (CY; GO:0005829; 308), endoplasmic reticulum
(ER; GO:0005783; 432), golgi apparatus (GL; GO:0005794; 222), lysosome
(LS; GO:0005764; 76), mitochondrion (MT; GO:0005739; 419), nucleolus
(NO; GO:0005730; 128), nucleus (NU; GO:0005634; 1731), peroxisome
(PX; GO:0005777; 56), plasma membrane (PM; GO:0005886; 1543),
vacuole (VU; GO:0005773; 85)

4570

(C) Protein–protein interactions
Sources Proteins Interactions

HPRD, BIND, REACTOME, DIP,
Ramani et al. (2005), Rual et al.
(2005), Stelzl et al. (2005),
Ewing et al. (2007)

10,819 80,970

(D) Gene expression profiles
Tissue Disease state Samples

Human brain Normal 82
Low-grade glioma 23
High-grade glioma 134

Proteome-wide discovery of mislocation in cancer
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addition, the expression profiles were also grouped according to

different studies and/or different microarray platforms. These three

series of expression profiles were integrated with an accumulated

human protein–protein interaction network (80,970 interactions

between 10,819 proteins), which resulted in dynamic networks

under the three conditions. Using the network features synthe-

sized from the dynamic networks, we computed a conditional

location map for each protein represented in the networks.

In total, 29,999 high-confidence locations were predicted for

9543 proteins, cumulative over the three conditions of normal

brain and low- and high-grade glioma (P < 0.005, corresponding

to a possibility degree $0.40 and an estimated false discovery rate

[FDR] of 5%) (Supplemental Fig. S5; see Supplemental Table S1 for

the predictions). One illustrative example is SMAD4, the product of

a likely tumor suppressor gene, which mediates signal trans-

duction by transforming growth factor beta and which has

been previously reported to localize to either the nucleus or the

cytosol (Nakao et al. 1997; Massague 1998; Sun et al. 1999). Our

predictions assigned a high possibility only to the nucleus under all

three conditions (Supplemental Fig. S6A); this was confirmed by

immunofluorescent imaging of normal brain tissues (Supplemental

Fig. S6B). The other previously reported location (cytosol) was nei-

ther computationally predicted nor experimentally observed, per-

haps because of our focus on normal brain and glioma versus other

tissues. In terms of the protein interaction network, SMAD4 can be

seen to interact with 48 neighbors for which the expression profiles

are coherent in brain and for which the location is known to be

nuclear (Supplemental Fig. S6C).

Of the predicted locations, 13,977 described a total of 5011

proteins whose locations were missed in our database (i.e., there

was no mapped location based on the GO annotations and

mapping relationships used here) (Supplemental Table S1). For

example, NKX2-2 is a gene coding for a homeobox factor in-

volved in central nervous system development. The subcellular

location of NKX2-2 is not documented in the GO database we

used, although as a transcription factor, the nucleus is one possible

location (Owen et al. 2008). However, our prediction showed a very

high score for NKX2-2 in the ER in all three conditions of brain

tissue, and the second highest but very low score in the nucleus

(Fig. 3A). Use of in vivo imaging provided confirmation that most

NKX2-2 was highly associated with an ER location marker in nor-

mal brain tissue (Fig. 3B), and not with other locations, including

the nucleus (Fig. 3C). We also observed that NKX2-2 was highly

merged with ER markers in low- and high-grade gliomas (Supple-

Figure 2. Models generated and usefulness of coherent protein interactions for location prediction. (A) The percentage of protein pairs sharing at least
one location, calculated from different sets of proteins. ‘‘Random’’ was calculated as the average of 1000 randomly selected interaction sets with the same
number of interactions as the original protein network. (B) Leave-two-out cross-validation with a DC-kNN classifier was used to assess the effect of static
and network features on the accuracy of predicting known subcellular locations. (C ) Fractions of protein pairs with known interactions among the top-k
pairs with highest correlations in expression. ‘‘Common’’ indicates pairs common to normal brain (Normal) and low (Low)- and high (High)-grade
gliomas. (D) Average AUC values of different feature sets, including S, ND, and LD. Here, the ‘‘TR’’ category means the final average AUC value of the
selected models for 13 locations in the training stage. ‘‘D’’ indicates the distance of incorporated network neighbors. (E ) Generated models with selected
feature sets for individual locations using a DC-kNN classifier. Black and white squares represent selected feature sets for each location, with the white
square denoting the best feature set overall. The last row indicates the AUC values for prediction of individual locations. The last column indicates the
average AUC values of individual feature sets across the 13 locations considered.

Lee et al.

1286 Genome Research
www.genome.org



mental Fig. S9). We also confirmed the ER location of NKX2-2 in

normal brain and primary glioma cells using cellular subfraction-

ation and Western blot assay (Fig. 3D). Signal peptide analysis using

SignalP (Petersen et al. 2011) also con-

firmed the ER localization. As another

example, the location of carboxypeptidase

B1, encoded by CPB1, has not yet been

clearly documented. Our prediction showed

the highest signal in cytosol and the sec-

ond highest, but weak, signal in ER in

normal brain (Fig. 3E). We also confirmed

that the major location of carboxypepti-

dase B1 is the cytosol and that a minor

location is the ER (Fig. 3F–H).

In addition to these examples, we

performed confocal microscopic analysis

of normal and glioma tissues to evaluate

(in double-blind fashion) a total of 100

locations assigned to a set of 20 randomly

selected proteins across five major loca-

tions: the cytosol, ER, Golgi apparatus,

nucleus, and plasma membrane (Fig. 3I).

We considered only proteins for which

antibodies were commercially available.

For example, the product of GSK3B, gly-

cogen synthase kinase 3 beta, was pre-

dicted and validated to localize only to

the nucleus in low-grade glioma, with

one true positive and four true negatives

(see Supplemental Fig. S10). Overall, 90

locations were correctly predicted among

the 100 tested (Fig. 3J; Supplemental Fig.

S11). This degree of accuracy of prediction

would be highly unlikely by random guess

(P » 0) (Supplemental Fig. S12). To check

the sensitivity of the predicted condition-

specific location to the expression levels

of proteins, we assessed the performance

of 50 permutated tests using the real

protein-expression data. The performance

was poorer than that with the original

expression data, regardless of the perfor-

mance measure used (P » 0) (Supplemental

Fig. S13). However, the performance with

permutated expression data was much

better than that with totally random

guesses, owing to the above-mentioned

high degree of functional enrichment be-

tween interacting pairs (Fig. 2A). More-

over, the models generated with LTOCV

also showed comparable performance to

other types of cross-validation (Supple-

mental Fig. S14).

Protein mislocation during glioma
progression

We next turned our attention to the 157

proteins for which predicted locations

were significantly different between nor-

mal brain and glioma (P < 0.01) (Supple-

mental Fig. S15; Supplemental Table S2).

One example was KIF13A (kinesin family member 13A). In normal

brain, KIF13A showed the highest signal in the Golgi apparatus,

whereas in low- and high-grade gliomas, it mapped most strongly

Figure 3. Novel protein locations in normal brain and glioma and predictive performance. (A)
Conditional location map for NKX2-2. A possibility degree between 0 and 1 (blue to red gradient) was
assigned to each of 13 subcellular locations (rows) across three conditions: normal brain, low- and high-
grade gliomas (columns). The letter ‘‘H’’ in the lower left-hand corner of the panels marks the location
with the highest degree of possibility among the 13 locations considered for each condition. (B) A series
of three images of the same cell from normal brain tissue, showing anti-NKX2-2 (left, green), the ER
(middle, red), or a merged image (right). The yellow color in the right panel indicates high overlap
between NKX2-2 and the ER. (C ) A second series showing anti-NKX2-2 (left, green), a nuclear marker
(middle, blue), and a merged image (right). (D) Results of cellular subfractionation and Western blotting
to determine the location of NKX2-2 in normal brain and primary glioma cells. (E ) Conditional location
map for CPB1. (F,G) Cells stained with anti-CPB1 (green) and a cytosolic (F, red) or nuclear (G, blue)
marker in normal brain tissue. Scale bar, 5 mm. (H) Results of cellular subfractionation and Western
blotting to determine the location of CPB1 using normal brain primary cells. (I ) Heat map of immu-
nochemistry validation results. Twenty proteins (columns) were interrogated at up to five locations
(rows) using two-dimensional imaging. Predictions overlaid with experimental observations (+ present
or – absent). The color of the heat map indicates the predicted score, here, the degree of possibility.
Symbols are colored black if predictions are correct; otherwise, they are white. ( J ) Validation statistics
from I summarized in tabular form. See Supplemental Figures S7 and S8 for antibody specificity tests for
the locations and the proteins used in this study. (b-A) beta-actin for a cytosol marker, (CRT) calreticulin
for endoplasmic reticulum, (RPII) RNA polymerase II for nucleus.
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to the nucleus (Fig. 4A). These locations were confirmed by im-

aging using primary cells and tissues (Fig. 4B,C; Supplemental Figs.

S16, S17), indicating mislocation of KIF13A from the Golgi appa-

ratus to the nucleus in glioma. The mislocation was frequent in

a large population of primary glioma cells from multiple in-

dividuals (Fig. 4D). In terms of network dynamics, we observed

that, in normal brain, KIF13A has high expression coherence

with its interaction partners AP1G1 (adaptor-related protein

complex 1, gamma 1 subunit) and COG2 (component of oligo-

meric Golgi complex 2), which are known to locate to the Golgi

apparatus (Fig. 4E). However, in both low- and high-grade glio-

mas, KIF13A loses coherence with AP1G1 and COG2 and assumes

high coherence with ATF7IP (activating transcription factor 7

interacting protein), which is known to localize to the nucleus

(Fig. 4F,G).

The global landscape of all 157 mislocation events in glioma

is shown in Figure 5A. The most frequent mislocations were from

ER to nucleus (21.66%), nucleus to ER (15.92%), or plasma mem-

brane to ER (12.10%); thus, many mislocations involved move-

ment into or out of the ER. For example, the conditional location

map for the product of RNF138 (ring finger protein 138, E3 ubiq-

uitin protein ligase) shows its mislocation from ER to nucleus in

glioma (Fig. 5B). Confocal imaging using primary cells confirmed

that, in normal brain, RNF138 overlaps with markers for the ER,

but not the nucleus, while in glioma it overlaps with markers for

the nucleus, but not the ER (Fig. 5D; Supplemental Figs. S18, S19).

This mislocation was observed in most primary glioma cells from

multiple individuals (Fig. 5E). Cellular subfractionation and West-

ern blotting confirmed the mislocation of RNF138 (Fig. 5F). As an-

other example, TLX3 (T-cell leukemia homeobox 3) is a member

of a family of orphan homeobox genes that encode DNA-binding

nuclear transcription factors; TLX3 mislocation from nucleus to ER

during glioma progression was both predicted (Fig. 5C) and con-

firmed (Fig. 5G–I; Supplemental Figs. S20, S21).

Next, we performed additional testing of the mislocation

candidates (five positive and five negative cases). We performed

a single-blind randomized controlled trial using only proteins for

which antibodies were commercially available (the experiment-

ers were blinded to the proteins being investigated). For example,

ATIC (5-aminoimidazole-4-carboxamide ribonucleotide formyl-

transferase/IMP cyclohydrolase; predicted to mislocate from

cytosol to nucleus), DIP2A (DIP2 disco-interacting protein 2

homolog A; from nucleus to ER), DLX2 (distal-less homeobox 2;

from ER to nucleus), HPS5 (Hermansky–Pudlak syndrome 5; from

plasma membrane to ER), and TBX19 (T-box 19; from ER to nu-

cleus) were predicted to mislocate during glioma progression,

whereas CDH2 (cadherin 2, type 1, N-cadherin; plasma mem-

brane, regardless of glioma stage), HSF1 (heat-shock transcription

factor 1; nucleus), MAGED1 (melanoma antigen family D, 1; cy-

tosol), PAX6 (paired box 6; nucleus), and STAT3 (nucleus) were not.

Among the five positive candidates, locations of four proteins,

except HPS5, definitely differed between normal brain and glioma,

consistent with predictions (Supplemental Figs. S22–S25 for vali-

dation using in vivo imaging, Western blot of cellular subfraction,

and population assay). However, HPS5 resided at both plasma

membrane and ER in glioma, as well as in normal brain (Supple-

mental Fig. S26). In the negatives, the locations of the four proteins,

except STAT3, were consistent with predictions (Supplemental Fig.

S27). STAT3, however, changed its location from plasma membrane

in normal brain to nucleus in glioma (Supplemental Fig. S28).

Therefore, eight out of 10 positives and negatives were observed

to be correctly predicted.

In total, we successfully validated fifteen mislocation events

predicted to occur during glioma progression: KIF13A (Fig. 4),

RNF138 and TLX3 (Fig. 5), PSPN and GFRA4 (Fig. 6), ATIC, DIP2A,

DLX2, and TBX19 (Supplemental Figs. S22–S25), AGAP1 (ArfGAP

with GTPase domain, ankyrin repeat and PH domain 1; cytosol to

Golgi apparatus) (Supplemental Fig. S29), carboxypeptidase B1

(cytosol to ER) (Supplemental Fig. S30), NFRKB (nuclear factor

related to kappaB-binding protein; ER to nucleus) (Supplemental

Fig. S31), ARHGEF15 (Rho guanine nucleotide exchange factor

15; ER to plasma membrane) (Supplemental Fig. S32), CLK2

(CDC-like kinase 2; ER to nucleus) (Supplemental Fig. S33), and

SYT9 (synaptotagmin IX; Golgi apparatus to nucleus) (Supple-

mental Fig. S34). Interestingly, none of these mislocations had

been documented in glioma previously. Moreover, these vali-

dated mislocations could not be predicted using wild-type normal

or random-permutated expression sets (P » 0) (Supplemental

Fig. S35).

Dynamic complex of GFRA4/PSPN/RET may play an essential
role in glioma proliferation

Two of the confirmed proteins mislocated in glioma were PSPN

and GFRA4, for which predictions suggested a strong shift from

plasma membrane to ER in glioma (Fig. 6A,B). These mislocations

were observed frequently (Fig. 6D; Supplemental Fig. S36). How-

ever, the common interacting partner of GFRA4 and PSPN, RET,

was predicted and validated to remain in the plasma membrane

(Fig. 6C,D; Supplemental Fig. S36). Western blot analysis confirmed

the glioma-dependent locations of GFRA4/PSPN/RET (Fig. 6E–G).

Moreover, proximity ligation assays indicated dissociation of RET

from GFRA4 or PSPN in glioma (Fig. 7A; Supplemental Fig. S37).

These dissociations were not caused by reduced GFRA4/PSPN/RET

protein expression in glioma (Supplemental Fig. S38), but mainly

by mislocation of GFRA4 and PSPN. Interestingly, the interaction

between GFRA4 and PSPN was consistently observed, and the

number of interacting pairs increased with progressive disease

stages (Fig. 7B; Supplemental Fig. S37). However, the GFRA4/PSPN

interaction was weak in glioma (Fig. 7C).

We observed that GFRA4 had a point mutation in exon 2 in

glioma cells (Fig. 7D), which altered its encoded protein sequence

from Cys to Ser at a position common to the three known isoforms

of GFRA4. Cys residues drive protein folding and are therefore

closely related to subcellular protein trafficking (Herrmann and

Riemer 2010; Vascotto et al. 2011). We also observed a marked de-

crease in proliferation of glioma cells after GFRA4 silencing (Fig. 7E).

GFRA4 silencing also reduced the levels of phosphorylated STAT3

(pSTAT3), which was widely found in the nucleus in glioma cells

with no marked change in total pSTAT3 expression level (Fig. 7F;

Supplemental Fig. S39). Surprisingly, artificial redirection of GFRA4

to the plasma membrane in live glioma cells (Fig. 7G; Supplemental

Movie 1) markedly decreased cell proliferation (Fig. 7E) and the

pSTAT3 expression level (Fig. 7F). Inappropriate location and com-

plex formation of GFRA4 potentiated cell cycle progression and

tumor growth.

Discussion
To the best of our knowledge, this paper describes the first com-

putational approach for predicting conditional changes in the

subcellular location of proteins in a genome-wide manner. The

core concept behind this approach is that functional coherence

in the gene expression profiles of protein pairs that are known to
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interact physically is an indicator of their subcellular location. As

shown in Figure 2, A and B, interacting protein pairs with similar

expression patterns at the mRNA level showed the highest degree

of location sharing among different kinds of protein pairs, in-

cluding pairs with inversely correlated expression patterns. Thus,

to make inferences with regard to dynamic properties, such as

protein location, one need only look at neighbors showing high

functional coherence scores under a specific condition. However,

high functional coherence scores for the expression profiles do

not necessary imply physical interactions between proteins,

even though they give some indication as to physical interactions

(Fig. 2C). This principle may not cover every mislocation event, as

one can imagine that interacting proteins might colocalize even

if their mRNA expression patterns are not coherent. However,

the conditional location maps are not based on any single inter-

acting protein but on trends integrated over the entire network

neighborhood. To address issues of coverage, the definition of the

network ‘neighborhood’ can be extended to include not only a

protein’s direct interactors but all proteins reachable within a

certain network distance (here, we used a network distance of two).

In prediction of static protein locations, network-based methods

have been shown to be surprisingly robust to missing interaction

data (Lee et al. 2008).

In a sense, because we categorized our samples as normal brain

and low- and high-grade glioma, the current study has a limited

ability to discover different location changes across various normal

conditions at different time points or in different glioma subtypes

such as IDH mutant and IDH wild type. However, if the expression

data could be recategorized according to the subconditions of the

various normal tissues or glioma subtypes, the conditional location

mapping framework presented here could easily be used to dis-

cover time-dependent or glioma type-specific location changes.

Even though our current focus is location change in a specific

disease (glioma), this framework can be used to map location

changes under any type of condition for which gene expression

profiles are available, such as diseases, stem cell differentiation,

and responses to drugs and external stresses.

The landscape of cancer-related mislocations (Fig. 5) suggests

that many instances involve the ER. Misfolding of some proteins is

known to occur in the ER under oxidative stress conditions or in

diverse diseases (Uehara et al. 2006). Because of such misfolding,

proteins might not be transported to their target locations from

the ER. This might result in malfunction of the corresponding

proteins, leading to disease. Interestingly, among the mislocation

events that we observed were striking changes in locations and

interactions between RET, GFRA4, and PSPN, suggesting that

these might play a key role in glioma progression (Figs. 6, 7).

These findings are supported in part by previous evidence. RET is

an established proto-oncogene associated with various cancers, in-

cluding multiple endocrine neoplasia type 2A and 2B (Mulligan

et al. 1994; Rossel et al. 1997; Hansford and Mulligan 2000). It

encodes a receptor tyrosine kinase involved in control of cell

survival, differentiation, proliferation, migration, chemotaxis,

branching morphogenesis, neurite outgrowth, and synaptic plas-

ticity. RET itself is activated by members of the GDNF family of

ligands that includes PSPN (Lin et al. 1993; Milbrandt et al. 1998).

Figure 4. Prediction and validation of KIF13A mislocation in glioma tissues and cells. (A) Conditional location map for KIF13A, for which the highest
signal under normal conditions was in the Golgi apparatus (GL), but in low- and high-grade gliomas was in the nucleus (NU). The color indicates degree of
possibility and ‘‘H’’ indicates the location with the highest degree of possibility within each condition. (B,C ) Confocal images for KIF13A (green) together
with markers for GL (red, row 1) or NU (blue, row 2) in normal (B) and glioma (C ) tissues reveals results consistent with predictions. Scale bar, 5 mm. (D) The
fraction of colocalized cells expressing GL and NU markers using >50,000 normal brain and glioma primary cells. Samples from four normal and five glioma
subjects were used. (E–G) The dynamic interaction neighborhood of KIF13A in normal brain (E ), and low- (F ) and high-grade (G) glioma tissues. Node
color/shape indicates known protein locations. The width of each link is proportional to the expression coherence score, which is also indicated nu-
merically for selected links. Red links indicate key interactions.
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Such ligands bind to RET through the GDNF receptors GFRA1–4,

a family of glycosyl phosphatidylinositol-anchored proteins.

GFRA4 is specific for PSPN, and its role in familial medullary

thyroid carcinoma has been documented (Lindahl et al. 2001).

Using our conditional location-mapping framework, we could

identify that mislocation of GFRA4 and PSPN might be one of the

key events in glioma progression. However, the precise mechanisms

by which GFRA4 and PSPN mislocate to the ER rather than the

plasma membrane need to be investigated further. Nonetheless,

it appears likely that inappropriate location and complex for-

mation of GFRA4 potentiates cell cycle progression and tumor

growth.

In this study, we predicted 157 mislocation candidates and

successfully validated 15. As we tested only a small portion of the

predicted candidates, the other candidates also need to be vali-

dated further.

Methods

Protein locations, interactions, and expression profiles
For known static locations of human proteins, we obtained GO
Cellular Component annotations using the AmiGO tool (http://

amigo.geneontology.org/cgi-bin/amigo/go.cgi) and mapped these to

13 high-level subcellular locations using only experimental evidence

codes (including EXP, IDA, IPI, IMP, IGI, and IEP) for the GO anno-

tations (Table 1B). A total of 4570 proteins had GO annotations and

were represented with sequence information in the UniProt data-

base. For the protein–protein interaction network, we downloaded

interactions from the HPRD (Keshava Prasad et al. 2009), BIND

(Bader et al. 2001), REACTOME (Joshi-Tope et al. 2005), and DIP

(Salwinski et al. 2004) databases (Table 1C). We also included two

recent Y2H results (Rual et al. 2005; Stelzl et al. 2005), the results of

immunoprecipitation followed by LC-ESI-MS/MS (Ewing et al.

Figure 5. The landscape of protein mislocations in human glioma. (A) The landscape of mislocations in glioma. Each peak (z-axis) corresponds to the
percentage of these mislocation candidates moving from one location (x-axis) to another (y-axis). Colors along the x and y margins represent the total
percentage of proteins mislocating out of or into a location, respectively. (B,C ) Conditional location maps of RNF138 and TLX3 are shown as examples of
the most common mislocations from the ER to the nucleus (NU) or from the NU to ER, respectively. The color indicates degree of possibility and ‘‘H’’
indicates the location with the highest degree of possibility within each condition. (D–I ) Validation of RNF138 (D) and TLX3 (G) using confocal images for
normal brain and glioma tissues. Confirmation of RNF138 (E,F) and TLX3 (H,I ) mislocations by population assay and Western blot analyses using normal
brain and glioma primary cells. For the population assay, samples from four normal and five glioma subjects were used. (Green) RNF138 or TLX3, (red) ER,
(blue) NU, (CRT) calreticulin for an ER marker, (RPII) RNA polymerase II for nucleus. Scale bar, 5 mm.
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2007), and interactions mined from prior literature (Ramani et al.
2005). Expression profiles of normal brain and low- and high-grade
gliomas were downloaded from the NCBI Gene Expression Omni-
bus (GEO) database (Table 1D). For studies in GEO that used two
channel microarray platforms, total RNA abundance values were
extracted for a specific channel of interest. When multiple probes
per gene were available, we computed the average value. Expression
profiles were quantile normalized. For missing expression values
within a single experiment set, we applied a kNN imputation
method if the percentage of missing values for a gene was <30%;
otherwise, the expressions were discarded.

Expression coherence score

An expression coherence score is computed between proteins
a and b under a specific condition:

F a; bð Þ ¼ � log2 C
min med að Þ;med bð Þð Þ

MEDIAN
r a; bð Þ

� �
;

where r a; bð Þ (–1 to 1, inclusive) is the Pearson correlation coefficient
between the gene expression levels of a and b, med að Þ (or med bð Þ) is
the median expression level of a (or b), MEDIAN is the median value
of all median expression levels of genes used, and C xð Þ is the P-value
of x versus the distribution of the correlation coefficients of all
interacting protein pairs. If F a; bð Þ cannot be directly calculated
owing to missing or insufficient expression values, it is assigned the
median coherence value of all interactions involving a or b and
otherwise the median of all interactions in the network. If a and b is
not a direct interaction (e.g., b is in the second neighborhood of a),

we multiplied the coherence scores along all the shortest paths be-
tween a and b and chose the product with the maximum value.

Generation of protein features and prediction model
generation

In total, 29 types of single protein and network feature sets were
generated for each protein as described previously (Lee et al. 2008).
Among the prepared feature sets, we selected a combination of
feature sets using a DC-kNN classifier for each location for model
generation. Individual models produce a confidence score for each
location of a protein (see Supplemental Methods for details).

Conditional location map and scoring the degree of possibility

A conditional location map for a protein consists of degrees of
possibility for each location under individual conditions. For each
protein, a DC-kNN classifier was used to assign a confidence c to
each location l with a selected feature set. This confidence score was
further expressed as a degree of possibility P(0;1). Using guidelines
proposed by Dubois and colleagues (Dubois et al. 2004), we con-
verted the confidence score to a degree of possibility according to
the following formula:

Pl cð Þ ¼

DP
l cð Þ
TP

l

þ DN
l cð Þ
TN

l

2
:

TP
l and TN

l represent the total areas under the confidence score
distributions of Positive and Negative gold-standard examples for
subcellular location l. These areas are computed from X, the min-

Figure 6. Conditional location of GFRA4, PSPN, and RET in glioma. (A–C) CLMs of GFRA4 (A), PSPN (B), and RET (C ), and the results of confocal images
in normal brain and glioma tissues. The color of the heat maps indicates predicted degree of possibility, and ‘‘H’’ indicates the location with the highest
degree of possibility within each condition. Scale bar, 5 mm. (D) Location fraction of GFRA4, PSPN, and RET in normal brain and glioma primary cells.
(E–G) Results of cellular subfractionation and Western blotting for locations of GFRA4 (E ), PSPN (F ), and RET (G ) in normal brain and glioma primary cells.
(SPA) sodium potassium ATPase (plasma membrane marker), (CRT) calreticulin (ER marker).
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imum value of the positive distribution, to Y, the maximum value
of the negative distribution. DP

l cð Þ and DN
l cð Þ represent the areas

under these Positive and Negative distributions from X to c. For the
gold-standard data set, we used the assigned locations of 4570
proteins based on GO Cellular Component terms (Table 1B). Pl cð Þ
is ‘0’ if c < X and ‘1’ if c > Y. A higher value of Pl means a higher
degree of possibility that a protein has location l.

Brain tissue preparation and primary cell culture

Human normal brain and glioma tissues were acquired from the
Brain Bank of Seoul National University Hospital in Korea. Brain
tissues were fixed in 4% paraformaldehyde in 0.1 M phosphate
buffer, followed by cryoprotection in 30% sucrose overnight (see
the Supplemental Methods for details).

Immunohistochemistry

Tissue sections were incubated overnight with protein-specific
antibodies at 4°C (Supplemental Table S3A). Tissues were rinsed
with phosphate-buffered saline (PBS) and incubated for 1 h
at room temperature with secondary antibodies (Supplemental
Table S3B). For counterstaining of the nucleus, cells were incu-
bated with DAPI (49,6-diamidino-2-phenylindole; 1 mg/mL; Sigma

Aldrich) for 40 sec. After washing with PBS,
coverslips were mounted on glass slides
using VectaShield mounting media (Vec-
tor Laboratories), and analyzed using an
LSM 710 confocal microscope (Carl Zeiss).

Proximity ligation assay

A proximity ligation assay (PLA) was
performed in both primary cells and tis-
sues to visualize the population of pro-
tein–protein interactions. Tissues were
washed with chilled PBS and incubated
overnight with protein-specific anti-
bodies at 4°C (Supplemental Table S3A).
Proximity ligation was performed accord-
ing to the manufacturer’s protocol using
the Duolink detection kit (Olink Biosci-
ence). Hoechst stain was included in the
Duolink detection kit during the detec-
tion reaction. Specimens were mounted
with VECTASHIELD mounting media
(Vector Laboratories) and analyzed using
an LSM 710 confocal microscope (Carl
Zeiss). The number of in situ PLA signals
per cell was counted by semiautomated
image analysis using BlobFinder V3.0 (see
Supplemental Methods for more infor-
mation about PLA).

Transfection and short-interfering
RNA synthesis

Human glioma primary cells were tran-
siently transfected using the OneDrop
Microporator MP kit (NanoEnTek) after
short-interfering RNA (siRNA) synthesis
according to the manufacturer’s instruc-
tions (Supplemental Table S3C).

Subcellular fractionation

Nuclear, cytoplasmic, ER, and plasma membrane fractions from
human normal primary and glioma cells were purified using the
Subcellular Protein Fractionation Kit (78840; Thermo Scientific),
Endoplasmic Reticulum Isolation Kit (ER0100; Sigma-Aldrich), and
Plasma Membrane Protein Extraction Kit (ab65400; Abcam), ac-
cording to the manufacturers’ instructions. Briefly, 1 3 106 cells
were cultured on 10-cm2 dishes (Nunc) and rinsed with PBS. The
cells were homogenized in extraction buffer containing a pro-
tease inhibitor cocktail. Extracts were centrifuged at 4°C, and the
supernatants were saved as the nuclear, cytoplasmic, ER, and plasma
membrane protein fractions. Validation of successful nuclear, cy-
toplasmic, ER, and plasma membrane separation was confirmed by
Western blotting of each fraction for RNA polymerase II, beta-actin,
calreticulin, and sodium potassium ATPase (Supplemental Table
S3A).

Immunoblot

Cell lysates were prepared with lysis buffer containing 7 M urea,
2 M thiourea, and 4% CHAPS. Equal amounts (25 mg) of protein
from each group were separated in 4%–12% polyacrylamide gels
(Invitrogen) and transferred to a nitrocellulose membrane

Figure 7. Dynamics of the GFRA4/PSPN/RET complex in glioma. (A,B) A proximity ligation assay
was used to measure groups of close physical interactions between RET and PSPN, RET and GFRA4,
and PSPN and GFRA4 in normal brain and glioma tissues. Red spots indicate physical proximity of the
corresponding protein pair. Insets: 43 magnification. Scale bar, 20 mm. (C ) Two fluorescence auto-
correlation functions, G(t), of GFP-PSPN (blue), TagRFP-GFRA4 (red), and one cross-correlation
function (black), calculated from time traces of fluorescent fluctuations with high-grade glioma primary
cells, as a function of correlation lag time t (ms). (D) Reverse transcription-PCR of GFRA4 with axon
2 mutation. (E ) Cell proliferation assay using thymidine incorporation in high-grade glioma cells with
(‘‘siGFRA4’’) or without GFRA4 silencing (‘‘glioma’’), and using rapamycin for GFRA4 redirection to the
plasma membrane (‘‘FKBP-FBP’’) in high-grade primary glioma cells. Bars indicate radioactivity in counts
per minute (CPM; average 6 standard deviation). (F ) Immunoblot results using primary high-grade
glioma (Glioma, FKBP-FRB, siGFRA4) and normal brain (Normal) cells. (G) Snapshots of GFRA4 redirection
to the plasma membrane using the rapamycin technique in high-grade glioma cells. (Cyan) GFRA4. Scale
bar, 100 mm.
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(Millipore). Proteins were detected with protein-specific antibodies
(Supplemental Table S3A).

GFRA4 gene mutation

Mutation analysis of GFRA4 was performed by reverse transcrip-
tion-PCR as described previously (Zhou et al. 2001).

FCS and FCCS measurements

Both LSM510/ConfoCor2 and LSM710/ConfoCor3 (Carl Zeiss)
were used for two-dimensional imaging, FCS, and FCCS measure-
ments to analyze colocalization and dynamics of protein–protein
interactions in live primary cells. FCS and FCCS measure the
binding strength of protein–protein interactions, in addition to
dynamic colocalization (Bacia et al. 2006). Each pair of proteins
(persephin, GFRA4, and RET) was transfected into primary normal
or glioma cells at a very low expression level (0.005 mg/ml plasmid
transfection concentration) in order to minimize perturbation to
the system. Data were analyzed with the ConfoCor2/ConfoCor3
software as described in our previous study (Pack et al. 2006; Noda
et al. 2008).

FRBP-rapamycin-FKB dimerization

Human glioma primary cells were transfected with siGFRA4 and
then singly transfected with fusion vectors (RET-FRB and FKBP-
GFRA4). Cells were incubated at room temperature for 20 min with
1 nmol/L of rapamycin and evaluated in a growth/proliferation assay.

Densitometry and statistical analysis

The densitometric intensity of each immunoreactive band was
determined using gel digitizing Image-Pro software. All data in this
report represent the results from at least three independent experi-
ments, unless stated otherwise. The cells positive for corresponding
antigens in immunohistochemical staining of normal human brain
and glioma tissues were analyzed by confocal microscope (710; Carl
Zeiss) using Zen software for unbiased counting. Statistical analyses
were performed using the Student’s t-test, and P < 0.05 was con-
sidered statistically significant.

Data access
The results of the predictions are available in the Supplemental
Material and at http://nbm.ajou.ac.kr/colp/SampleResult.jsp. The
web server to allow the prediction of condition locations and
mislocations is available at http://nbm.ajou.ac.kr/colp/.
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