Mouse TIS21 (12-O-tetradecanoyl phorbol-13-acetate inducible sequence 21), an ortholog of human BTG2 (B-cell translocation gene 2) and rat PC3, is a tumor suppressor that belongs to antiproliferative gene family, and is implicated in a variety of biological processes. Deregulation of c-Myc transcription factor is common in leukemia and lymphomas; the tumors are highly proliferative and often blocked at an earlier phase than the terminal stage of differentiation. The interrelation and the functional interplay of these two different proteins are not defined yet. We have shown here that the tumor suppressor TIS21 negatively regulated c-Myc expression during all-trans-retinoic acid (ATRA)-induced differentiation that accelerated differentiation and reduced proliferation of acute promyelocytic leukemia HL-60 cells. TIS21 downregulated c-Myc mRNA and additionally decreased c-Myc protein stability by increasing its phosphorylation at S62 and T58 residues via activation of Erk1/2 and inhibition of PI3K/Akt along with subsequent activation of GSK-3β in response to low dose ATRA treatment. HL-60 cells treated with GSK-3β or proteosome inhibitors revealed marked accumulation of c-Myc both in the presence and absence of ATRA and TIS21, confirming ATRA plus TIS21 mediated c-Myc phosphorylation and its consequent degradation in proteosome. Immunoprecipitation assay revealed that TIS21 hindered interaction of p-Erk1/2 with Akt, thus directly regulating MAPK and Akt activities without interaction with c-Myc. These findings exhibit anticarcinogenic potential of TIS21 via downregulation of c-Myc expression during ATRA induced differentiation of HL-60 cells involving activation and deactivation of two major c-Myc regulators Erk1/2 and Akt, respectively. Recently, we have reported transient induction of Btg2 expression in response to oxidative damage; however, the regulatory mechanism was not explored. In the present study we revealed NF-κB as the upstream mediator involved in Btg2 transcription in response to cell stress challenges such as serum deprivation and oxidative stress i.e. H2O2, or doxorubicin treatments. We observed close interrelation between generation of reactive oxygen species (ROS), enhanced IκBα degradation, nuclear translocation of NF-κB(p65/RelA) and the significant increase of Btg2 expression independent of p53 status. ChIP analysis revealed an enrichment of RelA (p65) bound to the κB response element on Btg2 promoter in response to the cell stress challenges. Employing various inhibitors led to cytoplasmic accumulation of IκBα, decreased p65 nuclear translocation along with significant reduction of Btg2 expression. Generation of ROS was the common event mediating NF-κB activation and Btg2 transcription. Furthermore, PKC activation was also found to be a critical factor mediating ROS-mediated signals to NF-κB pathway that culminate on Btg2 regulation, and specifically PKC-δ was responsible for this regulation under oxidative stress. Serum deprivation-associated ROS generation bypassed PKC activation, however, regulated NF-κB-Btg2 cascade via MAPK activation. The present data imply that oxidative stress upregulates Btg2 expression via ROS-PKC-NFκB or ROSMAPK-NFκB cascade, independent of p53 status that in turn could be involved in mediating various biological phenotypes depending on the cellular context. NF-κB plays crucial roles in inflammation and immunity and its activation is an important event for macrophage differentiation both in vivo and in vitro. In contrast alltrans- retinoic acid (ATRA) induces granulocytic differentiation independent of NF-κB involvement. Here we report that NF-κB activation enhanced and switched ATRA inducedgranulocytic programme to macrophages. Serum withdrawal and LPS treatment dampened IκBα expression via MAPK activation and ATRA treatment further corroborated this effect in HL-60 cells. The data revealed that NF-κB activation diverted ATRA induced granulocytic differentiation to macrophages as confirmed by microscopic examination and assessing the macrophages specific markers CD68 and MMP9 along with high level of Btg2. Employing various inhibitors attenuated NF-κB associated enhanced cells maturation and differentiation switch thus suggesting that NF-κB determines the lineage specificity of ATRA induced differentiation of myeloid leukemia cells. MAPK activation is important both for granulocytic and macrophage differentiation and the data revealed that MAPK- NF-κB signaling was an important event in differentiation switch. The study shows that NF-κB plays an important role in determining lineage specificity of ATRA induced differentiation of myeloid leukemia cells.
Mouse TIS21(12-O-tetradecanoyl phorbol-13-acetate inducible sequence 21)는 Human BTG2(B-cell translocation gene 2)와 rat PC3 와 상동(ortholog)인 암억제유전자로써, Antiproliferative gene family 에 속하여 다양한 생명현상에 관여하고 있다. 한편 백혈병과 림프종에서 c-Myc 전사인자의 변이가 흔히 발견되는데, 이런 암들의 특징은 과도한 세포분열과 분화초기 단계에서 멈추어 더 이상 분화되지 않는 것이며 아직 TIS21 과 c-Myc 간의 관계는 알려지지 않았다. 이 연구는 급성 전골수성 백혈병(Acute promyelocytic leukemia, APL) HL-60 세포를 all-trans-retinoic acid(ATRA)로 분화시킬 때 TIS21 이 c-Myc 의 발현을 억제하여 과도한 세포분열을 막고 분화를 촉진하는 것을 밝힌다. TIS21 이 c-Myc 의 mRNA 양을 줄이고, c-Myc 의 단백질 수명 또한 감소시키는 것을 낮은 농도의 ATRA 처리 후 관찰하였는데 그 기전으로는 Erk1/2 를 활성화하여 c-Myc 의 S62, T58 의 인산화를 증가시키고 PI3K/Akt 저해를 통한 GSK-3β를 활성화하는 것으로 밝혔다. 이는 인위적으로 GSK-3β를 첨가하거나 proteasome inhibitor 를 처리하였을 때 ATRA 와 TIS21 의 관여 여부와 상관없이 c-Myc 이 축적되는 것을 보아 ATRA와 TIS21 이 c-Myc 의 인산화를 통해 proteosome 으로 분해시켰다는 것을 재확인할 수 있었다. 면역침강 실험(Immunoprecipitation assay)에서 TIS21 이 p-Erk1/2 와 Akt 간의 결합을 저해하는 것을 보아 c-Myc 에 보다는 MAPK 와 Akt 활성에 직접적인 영향을 미치는 것을 관찰하였다. 이런 발견들로 하여금 TIS21 이 HL-60 세포가 ATRA 에 의해 분화될 때 c-Myc 의 발현을 억제하며, 이는 c-Myc 의 대표적인 조절자인 Erk1/2 와 Akt 를 각각 활성화, 그리고 불활성화시키는 것으로 암을 억제하는 것으로 밝혔다. 최근 산화적 손상(Oxidative damage)이 Btg2 를 일시적으로 발현시키는 것을 보고되었지만 그 기전까지는 밝히지 못하였다. 이번 연구를 통해 H2O2 나 Doxorubicin 처리 같은 oxidative stress 상황에서 NF-κB가 Btg2 를 발현시키는 역할을 한다고 찾게 되었다. Reactive oxygen species (ROS)의 증가, IκBα의 분해촉진, NF-κB의 핵내이동과, p53 와 무관한 Btg2 발현의 증가는 밀접한 관계가 있었고, ChIP 분석을 통해 세포 stress 상황에서 Btg2 promoter 의 κB responsive element 에 RelA(p65)가 강하게 붙는 것을 관찰하였다. 반면 다양한 inhibitor 의 사용을 통해 세포질 내에 IκBα의 축적, p65 의 핵내이동 저해, 그리고 Btg2 의 큰 감소를 관찰하였다. 한편, ROS 생성은 NF-κB 활성과 Btg2 전사를 모두 유도하는 역할을 하였다. 더욱이 ROS 를 통한 NF-κB 활성은 그 과정 중 PKC 활성화가 중요함을 알게 되었고, 구체적으로 PKC-δ가 관여됨을 밝혔다. Serum deprivation 때 생기는 ROS 는 PKC 활성화를 거치지 않고 MAPK 활성화를 통해 NF-κB-Btg2 흐름을 조절하였다. 지금까지의 결과로 보아 oxidative stress 는, p53 상태와는 무관하게, Btg2 전사를 ROS-PKC-NF-κB 흐름 또는 ROS-MAPK-NF-κB 흐름을 통해 증가시키며 이로써 다양한 생명현상과 연관될 수 있음을 말해주고 있다. NF-κB는 염증반응과 면역에서 매우 중요한 역할을 하며, 대식세포(macrophage) 분화에서도 in vivo 와 in vitro 상에서 NF-κB의 활성화가 중요하다. 그러나 all-trans-retinoic acid(ATRA)는 NF-κB와는 별개로 과립구성 분화(granulocytic differentiation)을 유도한다. 위 연구에서는 NF-κB의 활성화는 ATRA 로 인한 과립구성 분화를 대식세포성 분화로 바꾸는 역할을 하는 것으로 밝혔다. HL-60 세포에서 Serum withdrawal 과 LPS 처리는 MAPK 활성화를 통해 IκBα 발현을 줄이고, ATRA 또한 이런 현상을 강화했다. NFκB 활성화가 ATRA 로 인한 과립구성 분화를 대식세포성 분화로 바꾸는 역할을 현미경 관찰과 대식세포의 표식인 CD68, MMP9 발현이 증가하는 것으로 관찰하였고, 더불어 Btg2 도 증가하였다. 또한 다양한 inhibitor 처리시 NF-κB로 인한 분화 방향의 변화가 저해됨으로, 골수성 백혈병(Myeloid leukemia) 세포가 ATRA 로 분화될 때 NF-κB가 그 방향을 결정하는 것으로 예상할 수 있었다. MAPK 활성화는 과립구성 분화와 대식세포성 분화 과정 모두에서 중요하며 실험을 통해 분화 방향 (switch) 결정시 MAPK-NF-κB 신호 전달이 중요한 과정임을 알 수 있었다. 이 연구는 NF-κB가 ATRA 로 인한 골수성 백혈병 세포의 분화 방향 결정에 중요한 역할을 하고 있음을 보여 준다.