Cited 36 times in

The Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty.

DC Field Value Language
dc.contributor.authorKim, YS-
dc.contributor.authorShin, YS-
dc.contributor.authorPark, DY-
dc.contributor.authorChoi, JW-
dc.contributor.authorPark, JK-
dc.contributor.authorKim, DH-
dc.contributor.authorKim, CH-
dc.contributor.authorPark, SA-
dc.date.accessioned2017-04-26-
dc.date.available2017-04-26-
dc.date.issued2015-
dc.identifier.issn0090-6964-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/13929-
dc.description.abstractThe role of three-dimensional (3D) printing has expanded in diverse areas in medicine. As plastic surgery needs to fulfill the different demands from diverse individuals, the applications of tailored 3D printing will become indispensable. In this study, we evaluated the feasibility of using 3D-printed polycaprolactone (PCL) scaffold seeded with fibrin/chondrocytes as a new dorsal augmentation material for rhinoplasty. The construct was surgically implanted on the nasal dorsum in the subperiosteal plane of six rabbits. The implants were harvested 4 and 12 weeks after implantation and evaluated by gross morphological assessment, radiographic imaging, and histologic examination. The initial shape of the implant was unchanged in all cases, and no definite post-operative complications were seen over the 3-month period. Radiologic evaluation confirmed that implants remained in the initial location without migration or extrusion. Histologic evaluations showed that the scaffold architectures were maintained with minimal inflammatory reactions; however, expected neo-chondrogenesis was not definite in the constructs. A new PCL scaffold designed by 3D printing method seeded with fibrin/chondrocytes can be a biocompatible augmentation material in rhinoplasty in the future.-
dc.language.isoen-
dc.subject.MESHAnimals-
dc.subject.MESHImplants, Experimental-
dc.subject.MESHMaterials Testing-
dc.subject.MESHPolyesters/chemistry-
dc.subject.MESHPrinting, Three-Dimensional-
dc.subject.MESHRabbits-
dc.subject.MESHRhinoplasty-
dc.subject.MESHTissue Scaffolds/chemistry-
dc.titleThe Application of Three-Dimensional Printing in Animal Model of Augmentation Rhinoplasty.-
dc.typeArticle-
dc.identifier.pmid25636599-
dc.contributor.affiliatedAuthor김, 유석-
dc.contributor.affiliatedAuthor신, 유섭-
dc.contributor.affiliatedAuthor최, 재원-
dc.contributor.affiliatedAuthor김, 철호-
dc.type.localJournal Papers-
dc.identifier.doi10.1007/s10439-015-1261-3-
dc.citation.titleAnnals of biomedical engineering-
dc.citation.volume43-
dc.citation.number9-
dc.citation.date2015-
dc.citation.startPage2153-
dc.citation.endPage2162-
dc.identifier.bibliographicCitationAnnals of biomedical engineering, 43(9). : 2153-2162, 2015-
dc.identifier.eissn1573-9686-
dc.relation.journalidJ000906964-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Otolaryngology
Files in This Item:

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse