Cited 0 times in
AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Manavalan, B | - |
dc.contributor.author | Shin, TH | - |
dc.contributor.author | Kim, MO | - |
dc.contributor.author | Lee, G | - |
dc.date.accessioned | 2019-11-13T00:17:51Z | - |
dc.date.available | 2019-11-13T00:17:51Z | - |
dc.date.issued | 2018 | - |
dc.identifier.uri | http://repository.ajou.ac.kr/handle/201003/16776 | - |
dc.description.abstract | The use of therapeutic peptides in various inflammatory diseases and autoimmune disorders has received considerable attention: however, the identification of anti-inflammatory peptides (AIPs) through wet-lab experimentation is expensive and often time consuming. Therefore, the development of novel computational methods is needed to identify potential AIP candidates prior to in vitro experimentation. In this study, we proposed a random forest (RF)-based method for predicting AIPs, called AIPpred (AIP predictor in primary amino acid sequences), which was trained with 354 optimal features. First, we systematically studied the contribution of individual composition [amino acid-, dipeptide composition (DPC), amino acid index, chain-transition-distribution, and physicochemical properties] in AIP prediction. Since the performance of the DPC-based model is significantly better than that of other composition-based models, we applied a feature selection protocol on this model and identified the optimal features. AIPpred achieved an area under the curve (AUC) value of 0.801 in a 5-fold cross-validation test, which was approximately 2% higher than that of the control RF predictor trained with all DPC composition features, indicating the efficiency of the feature selection protocol. Furthermore, we evaluated the performance of AIPpred on an independent dataset, with results showing that our method outperformed an existing method, as well as 3 different machine learning methods developed in this study, with an AUC value of 0.814. These results indicated that AIPpred will be a useful tool for predicting AIPs and might efficiently assist the development of AIP therapeutics and biomedical research. AIPpred is freely accessible at www.thegleelab.org/AIPpred. | - |
dc.language.iso | en | - |
dc.title | AIPpred: Sequence-Based Prediction of Anti-inflammatory Peptides Using Random Forest | - |
dc.type | Article | - |
dc.identifier.pmid | 29636690 | - |
dc.identifier.url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881105/ | - |
dc.subject.keyword | AIPpred | - |
dc.subject.keyword | anti-inflammatory peptides | - |
dc.subject.keyword | hybrid features | - |
dc.subject.keyword | parameter optimization | - |
dc.subject.keyword | random forest | - |
dc.contributor.affiliatedAuthor | Balachandran, Manavalan | - |
dc.contributor.affiliatedAuthor | 이, 광 | - |
dc.type.local | Journal Papers | - |
dc.identifier.doi | 10.3389/fphar.2018.00276 | - |
dc.citation.title | Frontiers in pharmacology | - |
dc.citation.volume | 9 | - |
dc.citation.date | 2018 | - |
dc.citation.startPage | 276 | - |
dc.citation.endPage | 276 | - |
dc.identifier.bibliographicCitation | Frontiers in pharmacology, 9. : 276-276, 2018 | - |
dc.identifier.eissn | 1663-9812 | - |
dc.relation.journalid | J016639812 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.