This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using a micro-CT and a finite element model. 15 cored trabecular bone specimens with 20 ? of diameter were obtained from femoral heads with osteoporosis resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indexes. Based on the micro-images, a FE-model was created to determine mechanical property indexes. While the non-osteoporosis group had increases the trabecular thickness, the bone volume, the bone volume fraction, the degree of anisotropy and the trabecular number compared with those of osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indexes, the reaction force and the Young's modulus were lower in the osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.