Cited 0 times in Scipus Cited Count

Atm deficiency in the DNA polymerase beta null cerebellum results in cerebellar ataxia and Itpr1 reduction associated with alteration of cytosine methylation

DC Field Value Language
dc.contributor.authorKim, J-
dc.contributor.authorKim, K-
dc.contributor.authorMo, JS-
dc.contributor.authorLee, Y-
dc.date.accessioned2022-11-11T04:09:25Z-
dc.date.available2022-11-11T04:09:25Z-
dc.date.issued2020-
dc.identifier.issn0305-1048-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/22509-
dc.description.abstractGenomic instability resulting from defective DNA damage responses or repair causes several abnormalities, including progressive cerebellar ataxia, for which the molecular mechanisms are not well understood. Here, we report a new murine model of cerebellar ataxia resulting from concomitant inactivation of POLB and ATM. POLB is one of key enzymes for the repair of damaged or chemically modified bases, including methylated cytosine, but selective inactivation of Polb during neurogenesis affects only a subpopulation of cortical interneurons despite the accumulation of DNA damage throughout the brain. However, dual inactivation of Polb and Atm resulted in ataxia without significant neuropathological defects in the cerebellum. ATM is a protein kinase that responds to DNA strand breaks, and mutations in ATM are responsible for Ataxia Telangiectasia, which is characterized by progressive cerebellar ataxia. In the cerebella of mice deficient for both Polb and Atm, the most downregulated gene was Itpr1, likely because of misregulated DNA methylation cycle. ITPR1 is known to mediate calcium homeostasis, and ITPR1 mutations result in genetic diseases with cerebellar ataxia. Our data suggest that dysregulation of ITPR1 in the cerebellum could be one of contributing factors to progressive ataxia observed in human genomic instability syndromes.-
dc.language.isoen-
dc.subject.MESHAnimals-
dc.subject.MESHAtaxia Telangiectasia Mutated Proteins-
dc.subject.MESHBrain-
dc.subject.MESHCerebellar Ataxia-
dc.subject.MESHCerebellum-
dc.subject.MESHCytosine-
dc.subject.MESHDNA Damage-
dc.subject.MESHDNA Methylation-
dc.subject.MESHDNA Polymerase beta-
dc.subject.MESHInositol 1,4,5-Trisphosphate Receptors-
dc.subject.MESHMice-
dc.subject.MESHMice, Knockout-
dc.subject.MESHNeurogenesis-
dc.titleAtm deficiency in the DNA polymerase beta null cerebellum results in cerebellar ataxia and Itpr1 reduction associated with alteration of cytosine methylation-
dc.typeArticle-
dc.identifier.pmid32123907-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7144915-
dc.contributor.affiliatedAuthorMo, JS-
dc.contributor.affiliatedAuthorLee, Y-
dc.type.localJournal Papers-
dc.identifier.doi10.1093/nar/gkaa140-
dc.citation.titleNucleic acids research-
dc.citation.volume48-
dc.citation.number7-
dc.citation.date2020-
dc.citation.startPage3678-
dc.citation.endPage3691-
dc.identifier.bibliographicCitationNucleic acids research, 48(7). : 3678-3691, 2020-
dc.identifier.eissn1362-4962-
dc.relation.journalidJ003051048-
Appears in Collections:
Journal Papers > Research Organization > Institute for Medical Sciences
Files in This Item:
32123907.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse