Cited 0 times in Scipus Cited Count

The correlation of IRE1alpha oxidation with Nox4 activation in aging-associated vascular dysfunction

DC Field Value Language
dc.contributor.authorLee, HY-
dc.contributor.authorKim, HK-
dc.contributor.authorHoang, TH-
dc.contributor.authorYang, S-
dc.contributor.authorKim, HR-
dc.contributor.authorChae, HJ-
dc.date.accessioned2022-11-23T07:32:37Z-
dc.date.available2022-11-23T07:32:37Z-
dc.date.issued2020-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/22785-
dc.description.abstractOxidative stress attributable to the activation of a Nox4-containing NADPH oxidase is involved in aging-associated vascular dysfunction. However, the Nox4-induced signaling mechanism for the vascular alteration in aging remains unclear. In an aged aorta, the expression of Nox4 mRNA and protein by Nox family of genes was markedly increased compared with a young aorta. Nox4 localization mainly to ER was also established. In the aorta of Nox4 WT mice aged 23-24 months (aged), reactive oxygen species (ROS) and endoplasmic reticulum (ER)/oxidative stress were markedly increased compared with the counter KO mice. Furthermore, endothelial functions including eNOS coupling process and acetylcholine-induced vasodilation were significantly disturbed in the aged WT, slightly affected in the counter KO aorta. Consistently, in d-galactose-induced in vitro aging condition, ER-ROS and its associated ER Nox4 expression and activity were highly increased. Also, in chronic d-galactose-treated condition, IRE1alpha phosphorylation and XBP-1 splicing and were transiently increased, but IRE1alpha sulfonation was robustly increased in the aging Nox4 WT condition when compared to the counter KO condition. In vitro D-gal-induced aging study, the phenomenon were abrogated with Nox4 knock-down condition and was significantly decreased in GKT, Nox4 inhibitor and 4-PBA, ER chemical chaperone-treated human umbilical vein endothelial cells. The state of Nox4-based ER redox imbalance/ROS accumulation is suggested to determine the pathway "the UPR; IRE1alpha phosphorylation and XBP-1 splicing and the UPR failure; IRE1alpha cysteine-based oxidation, especially sulfonation, finally controlling aging-associated vascular dysfunction.-
dc.language.isoen-
dc.subject.MESHAging-
dc.subject.MESHAnimals-
dc.subject.MESHEndoribonucleases-
dc.subject.MESHMice-
dc.subject.MESHNADPH Oxidase 4-
dc.subject.MESHOxidation-Reduction-
dc.subject.MESHOxidative Stress-
dc.subject.MESHProtein Serine-Threonine Kinases-
dc.subject.MESHReactive Oxygen Species-
dc.titleThe correlation of IRE1alpha oxidation with Nox4 activation in aging-associated vascular dysfunction-
dc.typeArticle-
dc.identifier.pmid33010578-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7530295-
dc.subject.keywordEndoplasmic reticulum-
dc.subject.keywordNADPH oxidase 4-
dc.subject.keywordOxidative stress-
dc.subject.keywordReactive oxygen species-
dc.subject.keywordVascular dysfunction-
dc.contributor.affiliatedAuthorYang, S-
dc.type.localJournal Papers-
dc.identifier.doi10.1016/j.redox.2020.101727-
dc.citation.titleRedox biology-
dc.citation.volume37-
dc.citation.date2020-
dc.citation.startPage101727-
dc.citation.endPage101727-
dc.identifier.bibliographicCitationRedox biology, 37. : 101727-101727, 2020-
dc.identifier.eissn2213-2317-
dc.relation.journalidJ022132317-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Pharmacology
Files in This Item:
33010578.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse