Asthma is a complicated disease defined by a combination of clinical symptoms and physiological characteristics. Typically, asthma is diagnosed by the presence of episodic cough, wheezing, or dyspnea triggered by variable environmental factors (allergens and respiratory infections), and reversible airflow obstruction. To date, the majority of asthmatic patients have been adequately controlled by anti-inflammatory/bronchodilating agents, but those with severe asthma (SA) have not been sufficiently controlled by high-dose inhaled corticosteroids-long-acting beta-agonists plus additional controllers including leukotriene modifiers. Accordingly, these uncontrolled patients provoke a special issue, because they consume high healthcare resources, requiring innovative precision medicine solutions. Recently, phenotyping based on biomarkers of airway inflammation has led to elucidating the pathophysiological mechanism of SA, where emerging evidence has highlighted the significance of eosinophil or neutrophil extracellular traps contributing to the development of SA. Here, we aimed to provide current findings about extracellular traps as a novel therapeutic target for asthma to address medical unmet needs.