Cited 0 times in Scipus Cited Count

High Mobility Group Box 1 as an Autocrine Chemoattractant for Oligodendrocyte Lineage Cells in White Matter Stroke

Choi, JY  | Jin, X | Kim, H | Koh, S  | Cho, HJ | Kim, BG
Stroke, 54(2). : 575-586, 2023
Journal Title
Background: The migration of oligodendrocyte precursor cells (OPC) is a key process of remyelination, which is essential for the treatment of white matter stroke. This study aimed to investigate the role of HMGB1 (high mobility group box 1), a damage-associated molecular pattern released from dying oligodendrocytes, as an autocrine chemoattractant that promotes OPC migration. Methods: The migratory capacity of primary cultured OPCs was measured using the Boyden chamber assay. The downstream pathway of HMGB1-mediated OPC migration was specified by siRNA-induced knockdown or pharmacological blockade of TLR2 (toll-like receptor 2), RAGE (receptor for advanced glycation end product), Src, ERK1/2 (extracellular signal-regulated kinase1/2), and FAK (focal adhesion kinase). Conditioned media were collected from oxygen-glucose deprivation-treated oligodendrocytes, and the impact on OPC migration was assessed. Lesion size and number of intralesional Olig2(+) cells were analyzed in an in vivo model of white matter stroke with N5-(1-iminoethyl)-L-ornithine (L-NIO). Results: HMGB1 treatment promoted OPC migration. HMGB1 antagonism reversed such effects to untreated levels. Among the candidates for the downstream signal of HMGB1-mediated migration, the knockdown of TLR2 rather than that of RAGE attenuated the migration-promoting effect of HMGB1. Further specification of the HMGB1-TLR2 axis revealed that the phosphorylation of ERK1/2 and its downstream molecule FAK, rather than of Src, was decreased in TLR2-knockdown OPCs, and pharmacological inhibition of ERK1/2 and FAK led to decreased OPC migration. Oxygen-glucose deprivation-conditioned media promoted OPC migration, suggesting the autocrine chemoattractant function of HMGB1. In vivo, TLR2(-/-)-mice showed lesser intralesional Olig2(+) cells compared to wild-type controls in response to L-NIO induced ischemic injury regardless of HMGB1 administration. Conclusions: HMGB1, through the TLR2-ERK1/2-FAK axis, functions as an autocrine chemoattractant to promote OPC migration, which is an initial and indispensable step in remyelination. Thus, a novel treatment strategy for white matter stroke based on the HMGB1-TLR2 axis in the oligodendrocyte lineage could be feasible.


Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Brain Science
Ajou Authors
고, 승연  |  김, 병곤  |  최, 준영
Files in This Item:
There are no files associated with this item.


해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.