Cited 0 times in Scipus Cited Count

Discrete change in volatile anesthetic sensitivity in mice with inactivated tandem pore potassium ion channel TRESK.

Authors
Chae, YJ  | Zhang, J | Au, P | Sabbadini, M | Xie, GX | Yost, CS
Citation
Anesthesiology, 113(6). : 1326-1337, 2010
Journal Title
Anesthesiology
ISSN
0003-30221528-1175
Abstract
BACKGROUND: We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice.



METHODS: Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype.



RESULTS: With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates.



CONCLUSIONS: TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.
MeSH

DOI
10.1097/ALN.0b013e3181f90ca5
PMID
21042202
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Anesthesiology & Pain Medicine
Ajou Authors
채, 윤정
Full Text Link
Files in This Item:
There are no files associated with this item.
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse