43 351

Cited 85 times in

The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes.

Authors
Choi, KH; Choi, BH; Park, SR; Kim, BJ; Min, BH
Citation
Biomaterials, 31(20):5355-5365, 2010
Journal Title
Biomaterials
ISSN
0142-96121878-5905
Abstract
Extracellular matrix (ECM) materials have diverse physiological functions by themselves and can also act as reservoirs of cytokines and growth factors, so that they can affect the cell phenotype, attachment, migration and proliferation of cells. In this study, an ECM scaffold derived from porcine cartilage was evaluated for whether it can support and maintain chondrogenesis of rabbit mesenchymal stem cells (rMSCs) in vitro and in the nude mouse model in vivo. The porcine ECM scaffold was compared to a polyglycolic acid (PGA) scaffold and an MSC pellet as a control group. In an in vitro environment until 4 weeks, the ECM scaffold evoked chondrogenic differentiation of rMSCs earlier and produced more cartilaginous tissues than the PGA scaffold. Next, rMSCs in each scaffold were preconditioned with chondrogenic media in vitro for 1 week and implanted in the backs of nude mice for 6 weeks. The initially formed cartilaginous tissues turned into bone matrix with time centripetally from the outside of the region as observed by Safranin-O and von Kossa stains. This phenomenon progressed much more rapidly in the PGA group than in the ECM group. In the ECM group, the chondrogenic phenotypes of rMSCs were also maintained longer than in the PGA group. The loss of chondrogenic phenotypes was accompanied by the calcification of matrix, and hypertrophic changes by immunohistochemistry for osteocalcin and collagen type I and X. Blood vessel invasion took place more deeply and intensively in the PGA group. These results suggest that the ECM scaffold not only strongly supports chondrogenic differentiation of rMSCs, but also helps maintain its phenotype in vivo. We speculate that the ECM scaffold provides rMSCs with a favorable, native cartilage-like environment and therefore can be a promising tool for cartilage tissue engineering.
MeSH terms
AnimalsBiological Markers/metabolismBlood Vessels/drug effectsBlood Vessels/pathologyCalcification, Physiologic/drug effectsCell Differentiation*/drug effectsChondrocytes/cytologyChondrocytes/drug effectsChondrocytes/metabolism*Chondrogenesis*/drug effectsCollagen Type II/metabolismDNA/metabolismExtracellular Matrix/drug effectsExtracellular Matrix/metabolism*Glycosaminoglycans/pharmacologyHypertrophyMesenchymal Stem Cells/cytology*Mesenchymal Stem Cells/drug effectsMesenchymal Stem Cells/metabolismMiceOsteocalcin/metabolismPolyglycolic Acid/pharmacologyRabbitsStaining and LabelingSus scrofaTissue Scaffolds/chemistry*
DOI
10.1016/j.biomaterials.2010.03.053
PMID
20394983
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Orthopedic Surgery
AJOU Authors
민, 병현
Full Text Link
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse