Cited 0 times in Scipus Cited Count

Bone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels

DC Field Value Language
dc.contributor.authorKim, PH-
dc.contributor.authorYoon, HM-
dc.contributor.authorKim, JR-
dc.contributor.authorHwang, JY-
dc.contributor.authorChoi, JH-
dc.contributor.authorHwang, J-
dc.contributor.authorLee, J-
dc.contributor.authorSung, J-
dc.contributor.authorJung, KH-
dc.contributor.authorBae, B-
dc.contributor.authorJung, AY-
dc.contributor.authorCho, YA-
dc.contributor.authorShim, WH-
dc.contributor.authorBak, B-
dc.contributor.authorLee, JS-
dc.date.accessioned2023-12-11T05:42:41Z-
dc.date.available2023-12-11T05:42:41Z-
dc.date.issued2023-
dc.identifier.issn1229-6929-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/32031-
dc.description.abstractObjective: To develop a deep-learning-based bone age prediction model optimized for Korean children and adolescents and evaluate its feasibility by comparing it with a Greulich-Pyle-based deep-learning model. Materials and Methods: A convolutional neural network was trained to predict age according to the bone development shown on a hand radiograph (bone age) using 21036 hand radiographs of Korean children and adolescents without known bone development-affecting diseases/conditions obtained between 1998 and 2019 (median age [interquartile range {IQR}], 9 [7–12] years; male:female, 11794:9242) and their chronological ages as labels (Korean model). We constructed 2 separate external datasets consisting of Korean children and adolescents with healthy bone development (Institution 1: n = 343; median age [IQR], 10 [4–15] years; male: female, 183:160; Institution 2: n = 321; median age [IQR], 9 [5–14] years; male: female, 164:157) to test the model performance. The mean absolute error (MAE), root mean square error (RMSE), and proportions of bone age predictions within 6, 12, 18, and 24 months of the reference age (chronological age) were compared between the Korean model and a commercial model (VUNO Med-BoneAge version 1.1; VUNO) trained with Greulich-Pyle-based age as the label (GP-based model). Results: Compared with the GP-based model, the Korean model showed a lower RMSE (11.2 vs. 13.8 months; P = 0.004) and MAE (8.2 vs. 10.5 months; P = 0.002), a higher proportion of bone age predictions within 18 months of chronological age (88.3% vs. 82.2%; P = 0.031) for Institution 1, and a lower MAE (9.5 vs. 11.0 months; P = 0.022) and higher proportion of bone age predictions within 6 months (44.5% vs. 36.4%; P = 0.044) for Institution 2. Conclusion: The Korean model trained using the chronological ages of Korean children and adolescents without known bone development-affecting diseases/conditions as labels performed better in bone age assessment than the GP-based model in the Korean pediatric population. Further validation is required to confirm its accuracy.-
dc.language.isoen-
dc.subject.MESHAdolescent-
dc.subject.MESHAge Determination by Skeleton-
dc.subject.MESHArtificial Intelligence-
dc.subject.MESHChild-
dc.subject.MESHDeep Learning-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHInfant-
dc.subject.MESHMale-
dc.subject.MESHRadiography-
dc.subject.MESHRepublic of Korea-
dc.titleBone Age Assessment Using Artificial Intelligence in Korean Pediatric Population: A Comparison of Deep-Learning Models Trained With Healthy Chronological and Greulich-Pyle Ages as Labels-
dc.typeArticle-
dc.identifier.pmid37899524-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10613838-
dc.subject.keywordBone age-
dc.subject.keywordConvolutional neural network-
dc.subject.keywordDeep-learning-
dc.subject.keywordPediatrics-
dc.contributor.affiliatedAuthorHwang, J-
dc.type.localJournal Papers-
dc.identifier.doi10.3348/kjr.2023.0092-
dc.citation.titleKorean journal of radiology-
dc.citation.volume24-
dc.citation.number11-
dc.citation.date2023-
dc.citation.startPage1151-
dc.citation.endPage1163-
dc.identifier.bibliographicCitationKorean journal of radiology, 24(11). : 1151-1163, 2023-
dc.identifier.eissn2005-8330-
dc.relation.journalidJ012296929-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Radiology
Files in This Item:
37899524.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse