Cited 0 times in Scipus Cited Count

Corrigendum to ‘Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study’ [The Breast 73 (2024) 103599]

DC Field Value Language
dc.contributor.authorChoi, MS-
dc.contributor.authorChang, JS-
dc.contributor.authorKim, K-
dc.contributor.authorKim, JH-
dc.contributor.authorKim, TH-
dc.contributor.authorKim, S-
dc.contributor.authorCha, H-
dc.contributor.authorCho, O-
dc.contributor.authorChoi, JH-
dc.contributor.authorKim, M-
dc.contributor.authorKim, J-
dc.contributor.authorKim, TG-
dc.contributor.authorYeo, SG-
dc.contributor.authorChang, AR-
dc.contributor.authorAhn, SJ-
dc.contributor.authorChoi, J-
dc.contributor.authorKang, KM-
dc.contributor.authorKwon, J-
dc.contributor.authorKoo, T-
dc.contributor.authorKim, MY-
dc.contributor.authorChoi, SH-
dc.contributor.authorJeong, BK-
dc.contributor.authorJang, BS-
dc.contributor.authorJo, IY-
dc.contributor.authorLee, H-
dc.contributor.authorKim, N-
dc.contributor.authorPark, HJ-
dc.contributor.authorIm, JH-
dc.contributor.authorLee, SW-
dc.contributor.authorCho, Y-
dc.contributor.authorLee, SY-
dc.contributor.authorChang, JH-
dc.contributor.authorChun, J-
dc.contributor.authorLee, EM-
dc.contributor.authorKim, JS-
dc.contributor.authorShin, KH-
dc.contributor.authorKim, YB-
dc.date.accessioned2024-04-04T06:27:29Z-
dc.date.available2024-04-04T06:27:29Z-
dc.date.issued2024-
dc.identifier.issn0960-9776-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/32446-
dc.description.abstractThe authors apologize for the oversight in presenting incomplete affiliations for author Jin Sung Kim. Jin Sung Kim is affiliated with the Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea, and Oncosoft Inc., Seoul, Republic of Korea. The authors would like to apologize for any inconvenience caused.-
dc.language.isoen-
dc.titleCorrigendum to ‘Assessment of deep learning-based auto-contouring on interobserver consistency in target volume and organs-at-risk delineation for breast cancer: Implications for RTQA program in a multi-institutional study’ [The Breast 73 (2024) 103599]-
dc.typeArticle-
dc.identifier.pmid38161095-
dc.contributor.affiliatedAuthorCho, O-
dc.type.localJournal Papers-
dc.identifier.doi10.1016/j.breast.2023.103624-
dc.citation.titleBreast (Edinburgh, Scotland)-
dc.citation.volume74-
dc.citation.date2024-
dc.citation.startPage103624-
dc.citation.endPage103624-
dc.identifier.bibliographicCitationBreast (Edinburgh, Scotland), 74. : 103624-103624, 2024-
dc.identifier.eissn1532-3080-
dc.relation.journalidJ009609776-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Radiation Oncology
Files in This Item:
38161095.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse