Cited 0 times in
Skip-GANomaly++: Skip Connections and Residual Blocks for Anomaly Detection (Student Abstract)
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Park, JY | - |
dc.contributor.author | Hong, JR | - |
dc.contributor.author | Kim, MH | - |
dc.contributor.author | Kim, TJ | - |
dc.date.accessioned | 2024-06-19T07:06:56Z | - |
dc.date.available | 2024-06-19T07:06:56Z | - |
dc.date.issued | 2024 | - |
dc.identifier.issn | 2159-5399 | - |
dc.identifier.uri | http://repository.ajou.ac.kr/handle/201003/32511 | - |
dc.description.abstract | Anomaly detection is a critical task across various domains. Fundamentally, anomaly detection models offer methods to identify unusual patterns that do not align with expected behaviors. Notably, in the medical field, detecting anomalies in medical imagery or biometrics can facilitate early diagnosis of diseases. Consequently, we propose the Skip-GANomaly++ model, an enhanced and more efficient version of the conventional anomaly detection models. The proposed model's performance was evaluated through comparative experiments. Experimental results demonstrated superior performance across most classes compared to the previous models. | - |
dc.language.iso | en | - |
dc.title | Skip-GANomaly++: Skip Connections and Residual Blocks for Anomaly Detection (Student Abstract) | - |
dc.type | Article | - |
dc.subject.keyword | Anomaly Detection | - |
dc.subject.keyword | Generative Adversarial Network | - |
dc.subject.keyword | Skip-Connection | - |
dc.subject.keyword | Residual Block | - |
dc.subject.keyword | Optimization | - |
dc.contributor.affiliatedAuthor | Kim, TJ | - |
dc.type.local | Journal Papers | - |
dc.identifier.doi | 10.1609/aaai.v38i21.30496 | - |
dc.citation.title | Proceedings of the AAAI Conference on Artificial Intelligence | - |
dc.citation.volume | 38 | - |
dc.citation.number | 21 | - |
dc.citation.date | 2024 | - |
dc.citation.startPage | 23615 | - |
dc.citation.endPage | 23617 | - |
dc.identifier.bibliographicCitation | Proceedings of the AAAI Conference on Artificial Intelligence, 38(21). : 23615-23617, 2024 | - |
dc.embargo.liftdate | 9999-12-31 | - |
dc.embargo.terms | 9999-12-31 | - |
dc.identifier.eissn | 2374-3468 | - |
dc.relation.journalid | J021595399 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.