Cited 0 times in Scipus Cited Count

Applicable Machine Learning Model for Predicting Contrast-induced Nephropathy Based on Pre-catheterization Variables

DC Field Value Language
dc.contributor.authorChoi, H-
dc.contributor.authorChoi, B-
dc.contributor.authorPark, I-
dc.date.accessioned2024-11-19T04:31:34Z-
dc.date.available2024-11-19T04:31:34Z-
dc.date.issued2024-
dc.identifier.issn0918-2918-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/33476-
dc.language.isoen-
dc.subject.MESHAcute Kidney Injury-
dc.subject.MESHAged-
dc.subject.MESHContrast Media-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHKidney Diseases-
dc.subject.MESHMachine Learning-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.titleApplicable Machine Learning Model for Predicting Contrast-induced Nephropathy Based on Pre-catheterization Variables-
dc.typeArticle-
dc.identifier.pmid38296469-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11518587-
dc.subject.keywordacute kidney injury-
dc.subject.keywordcontrast-induced nephropathy-
dc.subject.keywordmachine learning-
dc.subject.keywordpercutaneous coronary intervention-
dc.contributor.affiliatedAuthorChoi, H-
dc.contributor.affiliatedAuthorPark, I-
dc.type.localJournal Papers-
dc.identifier.doi10.2169/internalmedicine.3308-23-
dc.citation.titleInternal medicine (Tokyo, Japan)-
dc.citation.volume63-
dc.citation.number19-
dc.citation.date2024-
dc.citation.startPage2719-
dc.citation.endPage2719-
dc.identifier.bibliographicCitationInternal medicine (Tokyo, Japan), 63(19). : 2719-2719, 2024-
dc.identifier.eissn1349-7235-
dc.relation.journalidJ009182918-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Nephrology
Files in This Item:
38296469.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse