Prostaglandin regulation is known to play a pivotal role in tumorigenesis; however, the contributions of the prostaglandin-metabolizing enzyme 15-hydroxyprostaglandin dehydrogenase (HPGD) to cancer development remain poorly understood. In this study, we investigate the effects of HPGD on cell viability, proliferation, anchorage-independent growth, and migration in triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer. Overexpression of HPGD in human TNBC cells resulted in both positive and negative regulation of cell proliferation and colony formation, with these effects occurring independent of prostaglandin E2 (PGE(2)). In contrast, overexpression of the mouse homolog, Hpgd, in murine TNBC cells led to a consistent but modest reduction in cell viability and colony formation, indicating that HPGD activity varies depending on species and cell line context. Notably, TNBC cells expressing a mutant form of Hpgd (Hpgd(mut)), which lacks the ability to bind PGE(2), exhibited similar functional outcomes in cell viability and colony formation as those expressing wild-type Hpgd (Hpgd(WT)). These findings suggest that HPGD may exert its tumorigenic effects through non-enzymatic mechanisms, potentially by involving modulation of KRAS signaling in human TNBC cells. Our results highlight the diverse roles of HPGD in cancer biology, particularly in the context of TNBC, and point to non-enzymatic pathways as a significant aspect of its tumorigenic activity.