The recognition of facial identity and expression are distinct tasks, with current models hypothesizing anatomic segregation of processing within a face-processing network. Using fMRI adaptation and a region-of-interest approach, we assessed how the perception of identity and expression changes in morphed stimuli affected the signal within this network, by contrasting (a) changes that crossed categorical boundaries of identity or expression with those that did not, and (b) changes that subjects perceived as causing identity or expression to change, versus changes that they perceived as not affecting the category of identity or expression. The occipital face area (OFA) was sensitive to any structural change in a face, whether it was identity or expression, but its signal did not correlate with whether subjects perceived a change or not. Both the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS) showed release from adaptation when subjects perceived a change in either identity or expression, although in the pSTS this effect only occurred when subjects were explicitly attending to expression. The middle superior temporal sulcus (mSTS) showed release from adaptation for expression only, and the precuneus for identity only. The data support models where the OFA is involved in the early perception of facial structure. However, evidence for a functional overlap in the FFA and pSTS, with both identity and expression signals in both areas, argues against a complete independence of identity and expression processing in these regions of the core face-processing network.