Cited 0 times in Scipus Cited Count

B cell translocation gene 2 enhances susceptibility of HeLa cells to doxorubicin-induced oxidative damage.

Lim, YB  | Park, TJ  | Lim, IK
The Journal of biological chemistry, 283(48). : 33110-33118, 2008
Journal Title
The Journal of biological chemistry
BTG2/TIS21/PC3 (B cell translocation gene 2) has been known as a p53 target gene and functions as a tumor suppressor in carcinogenesis of thymus, prostate, kidney, and liver. Although it has been known that the expression of BTG2/TIS21/PC3 is induced during chemotherapy-mediated apoptosis in cancer cells, a role of BTG2/TIS21/PC3 in cell death remains to be elucidated. In this study, the mechanism and role of BTG2 involved in the enhancement of doxorubicin (DOXO)-induced cell death were examined. Treatment of HeLa cells with DOXO revealed apoptotic phenomena, such as chromatin condensation and cleavage of poly(ADP-ribose) polymerase and lamin A/C with concomitant increase of BTG2/TIS21/PC3 expression. Employing infections of Ad-TIS21 virus and lentivirus with short hairpin RNA to BTG2, the effect of BTG2/TIS21/PC3 on the DOXO-induced apoptosis of HeLa cells and liver cancer cells was evaluated. Not only short hairpin RNA-BTG2 but also N-acetyl-L-cysteine significantly reduced the DOXO-induced HeLa cell death and generation of H2O2. Moreover, forced expression of BTG2/TIS21/PC3 using adenoviral vector augmented DOXO-induced cancer cell death concomitantly with increase of manganese-superoxide dismutase but not catalase, CuZnSOD, and glutathione peroxidase 1. The increased apoptosis by forced expression of BTG2/TIS21/PC3 could be inhibited by N-acetyl-L-cysteine and polyethylene glycol-catalase. These results therefore suggest that BTG2/TIS21/PC3 works as an enhancer of DOXO-induced cell death via accumulation of H2O2 by up-regulating manganese-superoxide dismutase without any other antioxidant enzymes. In summary, BTG2/TIS21/PC3 enhances cancer cell death by accumulating H2O2 via imbalance of the antioxidant enzymes in response to chemotherapy.

Appears in Collections:
Journal Papers > Research Organization > BK21
Journal Papers > School of Medicine / Graduate School of Medicine > Biochemistry & Molecular Biology
Ajou Authors
박, 태준  |  임, 영빈  |  임, 인경
Full Text Link
Files in This Item:


해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.