26 261

Cited 51 times in

Free radical production in CA1 neurons induces MIP-1alpha expression, microglia recruitment, and delayed neuronal death after transient forebrain ischemia.

Authors
Wang, HK; Park, UJ; Kim, SY; Lee, JH; Kim, SU; Gwag, BJ; Lee, YB
Citation
The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(7):1721-1727, 2008
Journal Title
The Journal of neuroscience : the official journal of the Society for Neuroscience
ISSN
0270-64741529-2401
Abstract
Several studies report microglial accumulation and activation in the CA1 area in response to transient forebrain ischemia (TFI). Here we examine the possibility that free radicals and chemokines mediate the transient activation of microglia. Free radicals are produced primarily in CA1 pyramidal neurons within 2 h of TFI. Administration of trolox, a vitamin E analog, led to the inhibition of free radical production and recruitment of microglia in the CA1 area. In addition, intrahippocampal injection of Fe2+ triggered free radical production in CA1 neurons, followed by the recruitment and activation of microglial cells into this area. TFI-induced expression of macrophage inflammatory protein-1alpha (MIP-1alpha) was increased in CA1 neurons before microglial recruitment, and blocked by trolox. Moreover, the MIP-1alpha level was upregulated in cultured hippocampal neurons exposed to Fe2+, suggesting an essential role of free radicals in TFI-induced expression of MIP-1alpha. Intracerebroventricular injection of vMIP-2 (viral macrophage inflammatory protein-2), a broad-spectrum peptide antagonist of chemokine receptors, attenuated microglial recruitment and delayed CA1 neuronal degeneration after TFI. Our data suggest that free radicals produced in CA1 neurons contribute to the recruitment and activation of microglia and neurodegeneration through MIP-1alpha expression.
MeSH terms
AnimalsAntioxidants/pharmacologyCell CountCell Death*Chemokine CCL3/metabolism*ChloridesChromans/pharmacologyFerric Compounds/pharmacologyFree Radicals/metabolism*Ischemic Attack, Transient/pathologyIschemic Attack, Transient/physiopathology*Ischemic Attack, Transient/therapyMaleMicroglia/metabolismMicroglia/pathology*Prosencephalon/blood supply*Pyramidal Cells/metabolism*Pyramidal Cells/pathologyRatsRats, Sprague-DawleyRecruitment, NeurophysiologicalReperfusionUp-Regulation
DOI
10.1523/JNEUROSCI.4973-07.2008
PMID
18272692
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Pharmacology
Journal Papers > Research Organization > Institute for Medical Sciences
AJOU Authors
곽병주이용범
Full Text Link
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse