This study was conducted to define the regulatory mechanisms underlying stress-induced decreases in food intake and weight gain. Rats received a single or 4 daily injections of dexamethasone (0.1 or 1 mg/kg). Food intake and weight gain were recorded, and plasma leptin, brain contents of serotonin (5-hydroxytryptamine; 5-HT), 5-hydroxy-indole-acetic acid (5-HIAA) and the raphe expression of tryptophan hydroxylase (TPH), monoamine oxidase A (MAO-A) and 5-HT reuptake transporter (5-HTT) genes were examined. A single injection of dexamethasone did not acutely affect food intake, but cumulative food intake and weight gain were suppressed dose-dependently by daily injections of dexamethasone. Both a single and repeated injections of dexamethasone elevated plasma leptin in a dose dependent manner. 5-HT contents in the hypothalamus was decreased, but 5-HIAA increased, both by a single and repeated dexamethasone. A single injection of dexamethasone did not affect mRNA expressions of TPH, MAO-A and 5-HTT genes, but repeated dexamethasone increased them in the dorsal raphe nucleus. These results suggest that plasma leptin may play a role in dexamethasone-induced anorexia. Additionally, increased expression of MAO-A and 5-HTT genes by repeated dexamethasone appears to be implicated in decreases of the brain 5-HT contents.