199 475

Cited 0 times in

Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy

Lee, JW | Han, HS | Han, KJ  | Park, J | Jeon, H | Ok, MR | Seok, HK | Ahn, JP | Lee, KE | Lee, DH | Yang, SJ | Cho, SY | Cha, PR | Kwon, H | Nam, TH | Han, JH | Rho, HJ | Lee, KS | Kim, YC | Mantovani, D
Proceedings of the National Academy of Sciences of the United States of America, 113(3). : 716-721, 2016
Journal Title
Proceedings of the National Academy of Sciences of the United States of America
There has been a tremendous amount of research in the past decade to optimize the mechanical properties and degradation behavior of the biodegradable Mg alloy for orthopedic implant. Despite the feasibility of degrading implant, the lack of fundamental understanding about biocompatibility and underlying bone formation mechanism is currently limiting the use in clinical applications. Herein, we report the result of long-term clinical study and systematic investigation of bone formation mechanism of the biodegradable Mg-5wt%Ca-1wt%Zn alloy implant through simultaneous observation of changes in element composition and crystallinity within degrading interface at hierarchical levels. Controlled degradation of Mg-5wt%Ca-1wt%Zn alloy results in the formation of biomimicking calcification matrix at the degrading interface to initiate the bone formation process. This process facilitates early bone healing and allows the complete replacement of biodegradable Mg implant by the new bone within 1 y of implantation, as demonstrated in 53 cases of successful long-term clinical study.

Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Orthopedic Surgery
Ajou Authors
한, 경진
Full Text Link
Files in This Item:


해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.