Cited 0 times in Scipus Cited Count

Applications of machine learning and deep learning to thyroid imaging: Where do we stand?

DC Field Value Language
dc.contributor.authorHa, EJ-
dc.contributor.authorBaek, JH-
dc.date.accessioned2022-12-16T05:44:37Z-
dc.date.available2022-12-16T05:44:37Z-
dc.date.issued2021-
dc.identifier.issn2288-5919-
dc.identifier.urihttp://repository.ajou.ac.kr/handle/201003/23378-
dc.description.abstractUltrasonography (US) is the primary diagnostic tool used to assess the risk of malignancy and to inform decision-making regarding the use of fine-needle aspiration (FNA) and post-FNA management in patients with thyroid nodules. However, since US image interpretation is operator-dependent and interobserver variability is moderate to substantial, unnecessary FNA and/or diagnostic surgery are common in practice. Artificial intelligence (AI)-based computer-aided diagnosis (CAD) systems have been introduced to help with the accurate and consistent interpretation of US features, ultimately leading to a decrease in unnecessary FNA. This review provides a developmental overview of the AI-based CAD systems currently used for thyroid nodules and describes the future developmental directions of these systems for the personalized and optimized management of thyroid nodules.-
dc.language.isoen-
dc.titleApplications of machine learning and deep learning to thyroid imaging: Where do we stand?-
dc.typeArticle-
dc.identifier.pmid32660203-
dc.identifier.urlhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7758100/-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordComputer-aided diagnosis-
dc.subject.keywordNeoplasms-
dc.subject.keywordThyroid-
dc.contributor.affiliatedAuthorHa, EJ-
dc.type.localJournal Papers-
dc.identifier.doi10.14366/usg.20068-
dc.citation.titleUltrasonography (Seoul, Korea)-
dc.citation.volume40-
dc.citation.number1-
dc.citation.date2021-
dc.citation.startPage23-
dc.citation.endPage29-
dc.identifier.bibliographicCitationUltrasonography (Seoul, Korea), 40(1). : 23-29, 2021-
dc.identifier.eissn2288-5943-
dc.relation.journalidJ022885919-
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Radiology
Files in This Item:
32660203.pdfDownload

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse