Cited 0 times in
Prediction Model for 30-Day Mortality after Non-Cardiac Surgery Using Machine-Learning Techniques Based on Preoperative Evaluation of Electronic Medical Records
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, B | - |
dc.contributor.author | Oh, AR | - |
dc.contributor.author | Lee, SH | - |
dc.contributor.author | Lee, DY | - |
dc.contributor.author | Lee, JH | - |
dc.contributor.author | Yang, K | - |
dc.contributor.author | Kim, HY | - |
dc.contributor.author | Park, RW | - |
dc.contributor.author | Park, J_대학원생 | - |
dc.date.accessioned | 2023-02-27T07:13:02Z | - |
dc.date.available | 2023-02-27T07:13:02Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | http://repository.ajou.ac.kr/handle/201003/24935 | - |
dc.description.abstract | BACKGROUND: Machine-learning techniques are useful for creating prediction models in clinical practice. This study aimed to construct a prediction model of postoperative 30-day mortality based on an automatically extracted electronic preoperative evaluation sheet. METHODS: We used data from 276,341 consecutive adult patients who underwent non-cardiac surgery between January 2011 and December 2020 at a tertiary center for model development and internal validation, and another dataset from 63,384 patients between January 2011 and October 2021 at another center for external validation. Postoperative 30-day mortality was 0.16%. We developed an extreme gradient boosting (XGB) prediction model using only variables from preoperative evaluation sheets. RESULTS: The model yielded an area under the curve of 0.960 and an area under the precision and recall curve of 0.216, which were 0.932 and 0.122, respectively, in the external validation set. The optimal threshold calculated by Youden's J statistic had a sensitivity of 0.885 and specificity of 0.914. In an additional analysis with balanced distribution, the model showed a similar predictive value. CONCLUSION: We presented a machine-learning prediction model for 30-day mortality after non-cardiac surgery using preoperative variables automatically extracted from electronic medical records and validated the model in a multi-center setting. Our model may help clinicians predict postoperative outcomes. | - |
dc.language.iso | en | - |
dc.title | Prediction Model for 30-Day Mortality after Non-Cardiac Surgery Using Machine-Learning Techniques Based on Preoperative Evaluation of Electronic Medical Records | - |
dc.type | Article | - |
dc.identifier.pmid | 36362715 | - |
dc.identifier.url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9659244 | - |
dc.subject.keyword | artificial intelligence | - |
dc.subject.keyword | machine learning | - |
dc.subject.keyword | mortality | - |
dc.subject.keyword | prognosis | - |
dc.subject.keyword | risk | - |
dc.subject.keyword | surgery | - |
dc.contributor.affiliatedAuthor | Kim, HY | - |
dc.contributor.affiliatedAuthor | Park, RW | - |
dc.type.local | Journal Papers | - |
dc.identifier.doi | 10.3390/jcm11216487 | - |
dc.citation.title | Journal of clinical medicine | - |
dc.citation.volume | 11 | - |
dc.citation.number | 21 | - |
dc.citation.date | 2022 | - |
dc.citation.startPage | 6487 | - |
dc.citation.endPage | 6487 | - |
dc.identifier.bibliographicCitation | Journal of clinical medicine, 11(21). : 6487-6487, 2022 | - |
dc.identifier.eissn | 2077-0383 | - |
dc.relation.journalid | J020770383 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.