Cited 0 times in Scipus Cited Count

Precise individual muscle segmentation in whole thigh CT scans for sarcopenia assessment using U-net transformer

Authors
Kim, HS | Kim, H | Kim, S | Cha, Y | Kim, JT  | Kim, JW | Ha, YC | Yoo, JI
Citation
Scientific reports, 14(1). : 3301-3301, 2024
Journal Title
Scientific reports
ISSN
2045-2322
Abstract
The study aims to develop a deep learning based automatic segmentation approach using the UNETR(U-net Transformer) architecture to quantify the volume of individual thigh muscles(27 muscles in 5 groups) for Sarcopenia assessment. By automating the segmentation process, this approach improves the efficiency and accuracy of muscle volume calculation, facilitating a comprehensive understanding of muscle composition and its relationship to Sarcopenia. The study utilized a dataset of 72 whole thigh CT scans from hip fracture patients, annotated by two radiologists. The UNETR model was trained to perform precise voxel-level segmentation and various metrics such as dice score, average symmetric surface distance, volume correlation, relative absolute volume difference and Hausdorff distance were employed to evaluate the model's performance. Additionally, the correlation between Sarcopenia and individual thigh muscle volumes was examined. The proposed model demonstrated superior segmentation performance compared to the baseline model, achieving higher dice scores (DC = 0.84) and lower average symmetric surface distances (ASSD = 1.4191 ± 0.91). The volume correlation between Sarcopenia and individual thigh muscles in the male group. Furthermore, the correlation analysis of grouped thigh muscles also showed negative associations with Sarcopenia in the male participants. This thesis presents a deep learning based automatic segmentation approach for quantifying individual thigh muscle volume in sarcopenia assessment. The results highlights the associations between Sarcopenia and specific individual muscles as well as grouped thigh muscle regions, particularly in males. The proposed method improves the efficiency and accuracy of muscle volume calculation, contributing to a comprehensive evaluation of Sarcopenia. This research enhances our understanding of muscle composition and performance, providing valuable insights for effective interventions in Sarcopenia management.
Keywords

MeSH

DOI
10.1038/s41598-024-53707-8
PMID
38331977
Appears in Collections:
Journal Papers > School of Medicine / Graduate School of Medicine > Orthopedic Surgery
Ajou Authors
김, 정택
Full Text Link
Files in This Item:
38331977.pdfDownload
Export

qrcode

해당 아이템을 이메일로 공유하기 원하시면 인증을 거치시기 바랍니다.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse